Objective: Circulating cell-free tumor DNA (cfDNA) is the DNA released by apoptotic and necrotic cells of the primary tumor into the blood during the period of tumor development. The cfDNA reflects the genetic and epigenetic alterations of the original tumor. TP53 mutations are a defining feature of high-grade serous ovarian carcinoma. We optimized the methods for detecting TP53 mutations in cfDNA from blood samples. We confirmed the correlation of TP53 mutation in primary ovarian cancer tissue and it in cfDNA using digital polymerase chain reaction (dPCR).
Methods: We found 12 frequent mutation sites in TP53 using The Cancer Genome Atlas and Catalogue of Somatic Mutations in Cancer data and manufactured 12 primers. The mutations in tissues were evaluated in fresh-frozen tissue (FFT) and formalin-fixed paraffin-embedded tissue (FFPET). We performed a prospective analysis of serial plasma samples collected from 4 patients before debulking surgery. We extracted cfDNA and calculated its concentration in blood. dPCR was used to analyze TP53 mutations in cfDNA, and we compared TP53 mutations in ovarian cancer tissue with those in cfDNA.
Results: Ten primers out of 12 detected the presence of TP53 mutations in FFT, FFPET, and cfDNA. In FFT and FFPET tissue, there were no significant differences. The average cfDNA concentration was 2.12±0.59 ng/mL. We also confirmed that mutations of cfDNA and those of FFT were all in R282W site.
Conclusion: This study developed detection methods for TP53 mutations in cfDNA in ovarian cancer patients using dPCR. The results demonstrated that there are the same TP53 mutations in both ovarian cancer tissue and cfDNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956115 | PMC |
http://dx.doi.org/10.5468/ogs.2018.61.3.328 | DOI Listing |
Surgery
January 2025
Speciality of Sydney, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia. Electronic address:
HPB (Oxford)
December 2024
Department of Surgery, Division of Surgical Oncology, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Background: Genomic variations related to racial and sex differences among patients with hepatocellular carcinoma (HCC) have not been investigated. We sought to characterize the mutational landscape of patients with HCC relative to race and sex.
Methods: The American Association for Cancer Research GENIE project (v16.
Cancer Lett
January 2025
Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.
View Article and Find Full Text PDFMutat Res
December 2024
School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India. Electronic address:
Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!