Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fall 2016 drought in the southeastern United States (SE US) appeared exceptional based on its widespread impacts, but the current monitoring framework that only extends from 1979-present does not readily facilitate evaluation of soil-moisture anomalies in a centennial context. A new method to extend monthly gridded soil-moisture estimates back to 1895 is developed, indicating that since 1895, October-November 2016 soil moisture (0-200 cm) in the SE US was likely the second lowest on record, behind 1954. This severe drought developed rapidly and was brought on by low September-November precipitation and record-high September-November daily maximum temperatures (Tmax). Record Tmax drove record-high atmospheric moisture demand, accounting for 28% of the October-November 2016 soil-moisture anomaly. Drought and heat in fall 2016 contrasted with 20-century wetting and cooling in the region, but resembled conditions more common from 1895-1956. Dynamically, the exceptional drying in fall 2016 was driven by anomalous ridging over the central United States that reduced south-southwesterly moisture transports into the SE US by approximately 75%. These circulation anomalies were likely promoted by a moderate La Niña and warmth in the tropical Atlantic, but these processes accounted for very little of the SE US drying in fall 2016, implying a large role for internal atmospheric variability. The extended analysis back to 1895 indicates that SE US droughts as strong as the 2016 event are more likely than indicated from a shorter 60-year perspective, and continued multi-decadal swings in precipitation may combine with future warming to further enhance the likelihood of such events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956230 | PMC |
http://dx.doi.org/10.1002/2017JD027523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!