Background: Lymph node metastasis (LNM) of lung cancer is an important factor related to survival and recurrence. The association between radiomics features of lung cancer and LNM remains unclear. We developed and validated a radiomics nomogram to predict LNM in solid lung adenocarcinoma.
Methods: A total of 159 eligible patients with solid lung adenocarcinoma were divided into training (n=106) and validation cohorts (n=53). Radiomics features were extracted from venous-phase CT images. We built a radiomics nomogram using a multivariate logistic regression model combined with CT-reported lymph node (LN) status. The performance of the radiomics nomogram was evaluated using the area under curve (AUC) of receiver operating characteristic curve. We performed decision curve analysis (DCA) within training and validation cohorts to assess the clinical usefulness of the nomogram.
Results: Fourteen radiomics features were chosen from 94 candidate features to build a radiomics signature that significantly correlated with LNM. The model showed good calibration and discrimination in the training cohort, with an AUC of 0.871 (95% CI: 0.804-0.937), sensitivity of 85.71% and specificity of 77.19%. In the validation cohort, AUC was 0.856 (95% CI: 0.745-0.966), sensitivity was 91.66%, and specificity was 82.14%. DCA demonstrated that the nomogram was clinically useful. The nomogram also showed good predictive ability in patients at high risk for LNM in the CT-reported LN negative (cN0) subgroup.
Conclusions: The radiomics nomogram, based on preoperative CT images, can be used as a noninvasive method to predict LNM in patients with solid lung adenocarcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945690 | PMC |
http://dx.doi.org/10.21037/jtd.2018.03.126 | DOI Listing |
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
Insights Imaging
January 2025
Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
Objectives: To develop and validate the performance of CT-based radiomics models for predicting the prognosis of acute pancreatitis.
Methods: All 344 patients (51 ± 15 years, 171 men) in a first episode of acute pancreatitis (AP) were retrospectively enrolled and randomly divided into training (n = 206), validation (n = 69), and test (n = 69) sets with the ratio of 6:2:2. The patients were dichotomized into good and poor prognosis subgroups based on follow-up CT and clinical data.
Abdom Radiol (NY)
January 2025
First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Purpose: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC).
Methods: A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52).
Front Neurol
December 2024
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Objective: To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT).
Methods: Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT.
Front Oncol
December 2024
Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China.
Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).
Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!