Altitude training has become increasingly popular in recent decades. Its central and peripheral effects are well-described; however, few studies have analyzed the effects of intermittent hypobaric hypoxia (IHH) alone on skeletal muscle morphofunctionality. Here, we studied the effects of IHH on different myofiber morphofunctional parameters, investigating whether contractile activity is required to elicit hypoxia-induced adaptations in trained rats. Eighteen male Sprague-Dawley rats were trained 1 month and then divided into three groups: (1) rats in normobaria (trained normobaric inactive, TNI); (2) rats subjected daily to a 4-h exposure to hypobaric hypoxia equivalent to 4,000 m (trained hypobaric inactive, THI); and (3) rats subjected daily to a 4-h exposure to hypobaric hypoxia just before performing light exercise (trained hypobaric active, THA). After 2 weeks, the tibialis anterior muscle (TA) was excised. Muscle cross-sections were stained for: (1) succinate dehydrogenase to identify oxidative metabolism; (2) myosin-ATPase to identify slow- and fast-twitch fibers; and (3) endothelial-ATPase to stain capillaries. Fibers were classified as slow oxidative (SO), fast oxidative glycolytic (FOG), fast intermediate glycolytic (FIG) or fast glycolytic (FG) and the following parameters were measured: fiber cross-sectional area (FCSA), number of capillaries per fiber (NCF), NCF per 1,000 μm of FCSA (CCA), fiber and capillary density (FD and CD), and the ratio between CD and FD (C/F). THI rats did not exhibit significant changes in most of the parameters, while THA animals showed reduced fiber size. Compared to TNI rats, FOG fibers from the lateral/medial fields, as well as FIG and FG fibers from the lateral region, had smaller FCSA in THA rats. Moreover, THA rats had increased NCF in FG fibers from all fields, in medial and posterior FIG fibers and in posterior FOG fibers. All fiber types from the three analyzed regions (except the posterior FG fibers) displayed a significantly increased CCA ratio compared to TNI rats. Global capillarisation was also increased in lateral and medial fields. Our results show that IHH alone does not induce alterations in the TA muscle. The inclusion of exercise immediately after the tested hypoxic conditions is enough to trigger a morphofunctional response that improves muscle capillarisation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945885 | PMC |
http://dx.doi.org/10.3389/fphys.2018.00481 | DOI Listing |
Front Microbiol
December 2024
The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.
Hypobaric hypoxia exposure occurs at high altitudes, including plateaus, and affects normal intestinal function and microbiota composition. Exposure induces an intestinal inflammatory response and oxidative stress injury, ultimately disrupting intestinal homeostasis and causing barrier damage. Thus, due to its anti-inflammatory, antioxidative, and intestinal microbiota-regulating properties, is a potentially effective probiotic intervention to protect the intestinal barrier during low-pressure hypoxia on plateaus.
View Article and Find Full Text PDFSports Med
December 2024
Ultra Sports Science Foundation, Pierre-Bénite, France.
Background: Antarctic expeditions, although supported by scientific knowledge, face various challenges, with little research conducted to explore the physical demands that explorers experience.
Objective: To summarise physiological, psychological, body composition and nutritional changes faced during trek expeditions in the Antarctic's continental portion.
Design: Systematic review.
NPJ Sci Food
December 2024
School of Public Health, Lanzhou University, Lanzhou, 730000, China.
The high-altitude, low-pressure, and hypoxia environment poses a significant threat to human health, particularly causing intestinal damage and disrupting gut microbiota. This study investigates the protective effects of Brassica rapa L. crude polysaccharides (BRP) on intestinal damage in mice exposed to hypobaric hypoxic conditions.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China.
Background: Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
After prolonged adaptation to high-altitude environments, Tibetan sheep have developed a robust capacity to withstand hypobaric hypoxia. Compared to low-altitude sheep, various organs and tissues in Tibetan sheep have undergone significant adaptive remodeling, particularly in the lungs. However, whether lambs and adult Tibetan sheep exhibit similar adaptations to high-altitude hypoxia remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!