AI Article Synopsis

  • Liver cirrhosis (LC) patients often have disrupted gut microbiota, and this study investigates how small bowel transit (SBT) influences this imbalance in a group of 36 LC patients compared to 20 healthy controls.
  • Results showed that LC patients had significantly higher Firmicutes/Bacteroidetes (F/B) ratios and Dysbiosis indices, indicating more severe microbiota disruption, especially in those with poorer liver function (Child-Pugh scores).
  • The study found a clear correlation between slower SBT and higher dysbiosis, suggesting that the rate of small bowel transit impacts gut microbiota composition in LC patients.

Article Abstract

Disturbance of the gut microbiota is common in liver cirrhosis (LC) patients, the underlying mechanisms of which are yet to be unfolded. This study aims to explore the relationship between small bowel transit (SBT) and gut microbiota in LC patients. Cross-sectional design was applied with 36 LC patients and 20 healthy controls (HCs). The gut microbiota was characterized by 16S rRNA gene sequencing. The Firmicutes/Bacteroidetes (F/B) ratio and the Microbial Dysbiosis index (MDI) were used to evaluate the severity of microbiota dysbiosis. The scintigraphy method was performed in patients to describe the objective values of SBT. Patients were then subdivided according to the Child-Pugh score (threshold = 5) or SBT value (threshold = 0.6) for microbiota analysis. LC patients were characterized by an altered gut microbiota; F/B ratios and MDI were higher than HC in both Child_5 (14.00 ± 14.69 vs. 2.86 ± 0.99, < 0.01; 0.49 ± 0.80 vs. -0.47 ± 0.69, < 0.01) and Child_5+ (15.81 ± 15.11 vs. 2.86±0.99, < 0.01; 1.11 ± 1.05 vs. -0.47 ± 0.69, < 0.01) sub-groups in patients. Difference in the gut microbiota between Child_ 5 and Child_5+ patients was inappreciable, but the SBT was relatively slower in Child_5+ patients (43 ± 26% vs. 80 ± 15%, < 0.05). Compared with the Child-Pugh score indicators, SBT showed stronger associations with bacterial genera. A clear difference in the gut microbiota was observed between SBT_0.6- and SBT_0.6+ patients [Pr(>) = 0.0068, pMANOVA], with higher F/B ratios and MDI in SBT_0.6- patients (19.71 ± 16.62 vs. 7.33 ± 6.65, < 0.01; 1.02 ± 0.97 vs. 0.20 ± 0.58, < 0.01). Similar results were observed between the SBT_0.6- and SBT_0.6+ sub-groups of patients with normal liver function and a Child-Pugh score of 5. SBT was negatively correlated with both the F/B ratio and MDI ( = -0.34, < 0.05; = -0.38, < 0.05). Interestingly, an increased capacity for the inferred pathway "bacterial invasion of epithelial cells" in patients, was highly negatively correlated with SBT ( = -0.57, < 0.01). The severity of microbiota dysbiosis in LC patients depends on SBT rather than Child-Pugh score. SBT might be significantly related to the gut microbiota abnormalities observed in patients with LC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946013PMC
http://dx.doi.org/10.3389/fphys.2018.00470DOI Listing

Publication Analysis

Top Keywords

gut microbiota
32
patients
16
child-pugh score
16
microbiota
11
sbt
9
small bowel
8
bowel transit
8
gut
8
altered gut
8
microbiota patients
8

Similar Publications

The consumption of prey intestines and their content, known as gastrophagy, is well-documented among Arctic Indigenous peoples, particularly Inuit. In Greenland, Inuit consume intestines from various animals, including the ptarmigan, a small herbivorous grouse bird. While gastrophagy provides the potential to transfer a large number of intestinal microorganisms from prey to predator, including to the human gut, its microbial implications remain to be investigated.

View Article and Find Full Text PDF

Obesity leads to a variety of health risks, and lead, which is ranked second in Agency for Toxic Substances and Disease Registry's priority list of harmful substances, may be more harmful to individuals that are obese. C57BL/6 mice were fed a normal diet or a high-fat diet with or without exposure to 1 g/L lead exposure in drinking water for 8 consecutive weeks. Serum and hepatic biochemistry analysis, histopathological observation, and RT-qPCR were used to explore the potential mechanism of liver damage in obese individuals after Pb exposure, and fecal microbiota transplantation was performed to investigate the role of the gut microbiota in the progression of fatty liver disease.

View Article and Find Full Text PDF

The gut microbiota mediates memory impairment under high-altitude hypoxia via the gut-brain axis in mice.

FEBS J

December 2024

Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.

Hypoxia is a predominant risk factor at high altitudes, and evidence suggests that high-altitude hypoxia alters the gut microbiota, which plays an essential regulatory role in memory function. However, the causal relationship between the gut microbiota and memory impairment under hypoxic conditions remains unclear. In this study, we employed a high-altitude hypoxia model combined with fecal microbiota transplantation (FMT) approach in mice to explore the effects of the gut microbiota on memory impairment in a hypoxic environment.

View Article and Find Full Text PDF

Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice.

Arch Toxicol

December 2024

Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.

Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF.

View Article and Find Full Text PDF

Glycosylation of oyster peptides by COS ameliorates zinc deficiency-induced syndromes: intestinal inflammation and imbalance of the gut microbiota .

Food Funct

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Zinc is essential for maintaining the integrity and repair of small intestinal epithelial cells while zinc deficiency could induce the inflammatory infiltration and imbalance of intestinal flora in the intestine. In this study, glycosylation between oyster protein hydrolysate (OPH) and chitosan oligosaccharide (COS) was conducted and used as the carrier of zinc ions (OCZn). The results of zeta potential and particle size distribution showed that the OPH-COS successfully bound to zinc ions to form OCZn with a surface zinc content of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: