Integrating Physical and Molecular Insights on Immune Cell Migration.

Trends Immunol

INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France. Electronic address:

Published: August 2018

AI Article Synopsis

  • Immune cells rely on their ability to navigate complex environments, either randomly or in specific directions, to identify and respond to antigens.
  • The actin cytoskeleton plays a critical role in enabling the movement of leukocytes, affecting their migratory behavior and responsiveness to environmental signals.
  • Recent research highlights the importance of the actomyosin cytoskeleton in enhancing immune cell migration, with new insights gained from physical modeling techniques.

Article Abstract

The function of most immune cells depends on their ability to migrate through complex microenvironments, either randomly to patrol for the presence of antigens or directionally to reach their next site of action. The actin cytoskeleton and its partners are key conductors of immune cell migration as they control the intrinsic migratory properties of leukocytes as well as their capacity to respond to cues present in their environment. In this review we focus on the latest discoveries regarding the role of the actomyosin cytoskeleton in optimizing immune cell migration in complex environments, with a special focus on recent insights provided by physical modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.it.2018.04.007DOI Listing

Publication Analysis

Top Keywords

immune cell
12
cell migration
12
integrating physical
4
physical molecular
4
molecular insights
4
immune
4
insights immune
4
migration function
4
function immune
4
immune cells
4

Similar Publications

Glycobiology of psoriasis: A review.

J Autoimmun

January 2025

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation.

View Article and Find Full Text PDF

Background And Aims: Alcohol-related liver disease (ALD) is one of the leading causes of severe liver disease with limited pharmacological treatments for alcohol-related steatohepatitis (ASH). CD44, a glycoprotein mainly expressed in immune cells, has been implicated in multiple inflammatory diseases but has never been studied in the ALD context. We therefore studied its contribution to ASH development in mice and its expression in ALD patients.

View Article and Find Full Text PDF

In unrelated allogeneic hematopoietic cell transplantation (allo-HCT), older and/or HLA-mismatched donors are known risk factors for survival outcomes. In healthy individuals, cytomegalovirus (CMV) seropositivity is associated with impaired adaptive immune systems. We assessed whether the adverse effects of donor risk factors are influenced by the donor CMV serostatus.

View Article and Find Full Text PDF

The role of genetic sequencing in the diagnostic work-up for chronic immune thrombocytopenia.

Blood Adv

January 2025

Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom, London, United Kingdom.

Immune Thrombocytopenia (ITP) is a heterogenous autoimmune disorder diagnosed by excluding other conditions. Misdiagnosis of primary ITP occurs in patients with inherited thrombocytopenia and primary immunodeficiency syndromes. This study investigates whether genetic testing for inherited thrombocytopenia or primary immunodeficiency can enhance diagnostic accuracy in ITP, and guide treatment strategies.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!