Vascular disease is a major cause of death worldwide, and the growing need for replacement vessels is not fully met by autologous grafts or completely synthetic alternatives. Tissue engineering has emerged as a compelling strategy for the creation of blood vessels for reconstructive surgeries. One promising method to obtain a suitable vessel scaffold is decellularization of donor vascular tissue followed by recellularization with autologous cells. To prevent thrombosis of vascular grafts, a confluent and functional autologous endothelium is required, and researchers are still looking for the optimal cell source and recellularization procedure. Recellularization of a decellularized scaffold with only a small volume of whole blood was recently put forward as a feasible option. Here we show that, in contrast to the published results, this method fails to re-endothelialize decellularized veins. Only occasional nucleated cells were seen on the luminal surface of the scaffolds. Instead, we saw fibrin threads, platelets and scattered erythrocytes. Molecular remnants of the endothelial cells were still attached to the scaffold, which explains in part why earlier results were misinterpreted. Decellularized vascular tissues may still be the best scaffolds available for vascular tissue engineering. However, for the establishment of an adequate autologous endothelial lining, methods other than exposure to autologous whole blood need to be developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020714 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2018.05.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!