Vaccinia-based vaccines to biothreat and emerging viruses.

Biotechnol Genet Eng Rev

b Medical Microbiology and Immunology , University of Alberta, Edmonton , Canada.

Published: April 2018

The past few years have seen a rash of emerging viral diseases, including the Ebola crisis in West Africa, the pandemic spread of chikungunya, and the recent explosion of Zika in South America. Vaccination is the most reliable and cost-effective method of control of infectious diseases, however, there is often a long delay in production and approval in getting new vaccines to market. Vaccinia was the first vaccine developed for the successful eradication of smallpox and has properties that make it attractive as a universal vaccine vector. Vaccinia can cause severe complications, particularly in immune suppressed recipients that would limit its utility, but nonreplicating and attenuated strains have been developed. Modified vaccinia Ankara is nonreplicating in human cells and can be safely given to immune suppressed individuals. Vaccinia has recently been modified for use as an oncolytic treatment for cancer therapy. These new vaccinia vectors are replicating; but have been attenuated and could prove useful as a universal vaccine carrier as many of these are in clinical trials for cancer therapy. This article reviews the development of a universal vaccinia vaccine platform for emerging diseases or biothreat agents, based on nonreplicating or live attenuated vaccinia viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491131PMC
http://dx.doi.org/10.1080/02648725.2018.1471643DOI Listing

Publication Analysis

Top Keywords

vaccinia vaccine
8
universal vaccine
8
immune suppressed
8
cancer therapy
8
vaccinia
7
vaccinia-based vaccines
4
vaccines biothreat
4
biothreat emerging
4
emerging viruses
4
viruses years
4

Similar Publications

Background/objectives: In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved.

Methods: To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors.

View Article and Find Full Text PDF

Background: The recent resurgence of mpox in central Africa has been declared a new public health emergency of international concern (PHEIC) requiring coordinated international responses. Vaccination is a priority to expand protection and enhance control strategies, but the vaccine's need exceeds the currently available doses. Intradermal (ID) administration of one-fifth of the standard modified vaccinia Ankara (MVA-BN) dose was temporarily authorized during the 2022 PHEIC.

View Article and Find Full Text PDF

Optimizing Microneutralization and IFN-γ ELISPOT Assays to Evaluate Mpox Immunity.

Vaccines (Basel)

December 2024

Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA.

Background: Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This study reports the development of robust assays for the measurement of mpox-specific neutralizing antibodies and IFN-γ-producing T-cell responses.

View Article and Find Full Text PDF

Background: In May, 2022, the first global outbreak of mpox (formerly known as monkeypox) occurred. In response, public health agencies in the UK have made smallpox vaccines available to individuals at the highest risk of infection. With mpox cases still being detected globally, novel tools are required to aid with diagnosis, serosurveillance, and the evaluation of immune responses following infection and immunisation with current and new vaccine candidates.

View Article and Find Full Text PDF

GM-CSF and IL-21-armed oncolytic vaccinia virus significantly enhances anti-tumor activity and synergizes with anti-PD1 immunotherapy in pancreatic cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!