A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Water-In-Water Emulsion Gels Stabilized by Cellulose Nanocrystals. | LitMetric

Particle-stabilized water-in-water emulsions were prepared by mixing dextran and poly(ethylene oxide) (PEO) in water and adding cellulose nanocrystals (CNC). The CNC formed a layer at the surface of the dispersed droplets formed by the PEO-rich phase. Excess CNC partitioned to the continuous dextran phase. Aggregation of CNC at different rates was induced by adding NaCl between 10 and 100 mM. In the presence of more than 2 g/L CNC, fast aggregation led to the formation of an emulsion gel showing no signs of creaming. Confocal laser scanning microscopy showed that the emulgels were formed by a continuous network of CNC in which the randomly distributed droplets were embedded. The gel stiffness was measured with oscillatory shear rheology and found to increase strongly with increasing CNC concentration ( C). The dispersed droplets were elastically active and increased the gel stiffness at low C. However, up to C = 10 g/L, the yield stress was too small to inhibit the flow when the gels were tilted. At C < 2 g/L, creaming was observed until the network of connected droplets became sufficiently dense to be strong enough to resist buoyancy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b01239DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
8
dispersed droplets
8
gel stiffness
8
cnc
7
water-in-water emulsion
4
emulsion gels
4
gels stabilized
4
stabilized cellulose
4
nanocrystals particle-stabilized
4
particle-stabilized water-in-water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!