Aims: The production of peptaibols, toxic secondary metabolites of Trichoderma, in the indoor environment is not well-documented. Here, we investigated the toxicity of peptaibols in the guttation droplets and biomass of Trichoderma strains isolated from problematic buildings.
Methods And Results: Seven indoor-isolated strains of T. atroviride, T. trixiae, T. paraviridescens and T. citrinoviride were cultivated on malt extract agar, gypsum boards and paperboards. Their biomass extracts and guttation droplets were highly cytotoxic in resting and motile boar sperm cell assays and in inhibition of somatic cell proliferation assays. The toxins were identified with HPLC/ESI-MS/MS as trichorzianines, trilongins, trichostrigocins and trichostrigocin-like peptaibols. They exhibited toxicity profiles similar to the reference peptaibols alamethicin, trilongins, and trichorzianine TA IIIc purified from T. atroviride H1/226. Particular Trichoderma strains emitted the same peptaibols in both their biomasses and exudate droplets. The trilongin-producing T. citrinoviride SJ40 strain grew at 37°C.
Conclusions: To our knowledge, this is the first report of indoor-isolated Trichoderma strains producing toxic peptaibols in their guttation droplets.
Significance And Impact Of The Study: This report proves that indoor isolates of Trichoderma release peptaibols in their guttation droplets. The presence of toxins in these types of exudates may serve as a mechanism of aerosol formation for nonvolatile toxins in the indoor air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.13920 | DOI Listing |
Appl Environ Microbiol
January 2025
Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
Unlabelled: The gene encoding fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFFungal Biol
February 2025
Federal University of Recôncavo da Bahia, Evolutionary Biology laboratory, Cruz das Almas, 44380-000, Bahia, Brazil. Electronic address:
During a survey of the genus Trichoderma in the Brazilian ecosystem Restinga, 22 strains related to Trichoderma spirale were found on the basis of identities of tef1, the molecular marker used to discriminate species of this genus. Trichoderma spirale was described in 1991 and since then four species related to it were described and later on added to the clade Spirale. Searches for tef1 sequences assigned to T.
View Article and Find Full Text PDFFungal Biol
February 2025
Department of Microbiology and Virology, Faculty of Biology, University of Havana, San Lázaro & L, Vedado, Havana, Cuba. Electronic address:
The aim of this work is to evaluate different molecular strategies deployed by indigenous isolates of Trichoderma in their interaction with the phytopathogen Botrytis cinerea. In vitro antagonism assays, determination of volatile and diffusible compounds, and the relative expression of the prb1 gene, which codes for an extracellular protease, before and during the stage of direct contact between the two fungi, were carried out; the characterization of this protease was also performed. All 17 Trichoderma strains tested showed high levels of inhibition against B.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!