Probabilistic reinforcement learning declines in healthy cognitive aging. While some findings suggest impairments are especially conspicuous in learning from rewards, resembling deficits in Parkinson's disease, others also show impairments in learning from punishments. To reconcile these findings, we tested 252 adults from 3 age groups on a probabilistic reinforcement learning task, analyzed trial-by-trial performance with a Q-reinforcement learning model, and correlated both fitted model parameters and behavior to polymorphisms in dopamine-related genes. Analyses revealed that learning from both positive and negative feedback declines with age but through different mechanisms: when learning from negative feedback, older adults were slower due to noisy decision-making; when learning from positive feedback, they tended to settle for a nonoptimal solution due to an imbalance in learning from positive and negative prediction errors. The imbalance was associated with polymorphisms in the DARPP-32 gene and appeared to arise from mechanisms different from those previously attributed to Parkinson's disease. Moreover, this imbalance predicted previous findings on aging using the Probabilistic Selection Task, which were misattributed to Parkinsonian mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993631 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2018.04.006 | DOI Listing |
Sci Rep
December 2024
Department of Information Security, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
In Internet of Things (IoT) networks, identifying the primary Medium Access Control (MAC) layer protocol which is suited for a service characteristic is necessary based on the requirements of the application. In this paper, we propose Energy Efficient and Group Priority MAC (EEGP-MAC) protocol using Hybrid Q-Learning Honey Badger Algorithm (QL-HBA) for IoT Networks. This algorithm employs reinforcement agents to select an environment based on predefined actions and tasks.
View Article and Find Full Text PDFSci Rep
December 2024
National University of Defense Technology, Changsha, Hunan, China.
In-band full-duplex communication has the potential to double the wireless channel capacity. However, how to efficiently transform the full-duplex gain at the physical layer into network throughput improvement is still a challenge, especially in dynamic communication environments. This paper presents a reinforcement learning-based full-duplex (RLFD) medium access control (MAC) protocol for wireless local-area networks (WLANs) with full-duplex access points.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India.
Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow convergence and a tendency to reach local optima when dealing with multidimensional problems. To address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
Psychoactive drugs such as alcohol and stimulants are typically used in social settings such as bars, parties or small groups. Yet, relatively little is known about how social contexts affect responses to drugs, or how the drugs alter social interactions. It is possible that positive social contexts enhance the rewarding properties of drugs, perhaps increasing their potential for repeated use and abuse.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electronic Engineering, National University of Defense Technology, Hefei, 230000, China.
Spectrum sensing is a key technology and prerequisite for Transform Domain Communication Systems (TDCS). The traditional approach typically involves selecting a working sub-band and maintaining it without further changes, with spectrum sensing being conducted periodically. However, this approach presents two main issues: on the one hand, if the selected working band has few idle channels, TDCS devices are unable to flexibly switch sub-bands, leading to reduced performance; on the other hand, periodic sensing consumes time and energy, limiting TDCS's transmission efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!