The luminescence and structural changes of 4, 4'-bipyridine in the crystal and powder forms under the effect of high pressure applied by a diamond anvil cell has been investigated through the fluorescence and Raman spectroscopies. In its single crystal structure, the 4, 4'-bipyridine molecules are paralleled arranged with the identifiable CH⋯N and π⋯π interactions among molecules. However, in the powder form, these intermolecular interactions nearly diminish. The 4, 4'-bipyridine crystal shows the obvious bathochromic-shifting of the emission band, which is different from the powder sample that displays a fixed luminescent band during compression. Additionally, the Raman bands of them both show shifts to higher wavenumbers as different degrees. The detailed peak assignments are performed based on the theoretical calculation through B3LYP method. Comparisons in spectral behaviors between the crystal and powder under compression show the crystal form exhibits a superior mechanochromic performance relative to the powder one, because the intermolecular interactions in the crystal form play dominating roles and they can be easily tuned along with pressure in such a highly ordered structure compared to the powder form. The relation investigation between property and supramolecular interactions not only makes deeper understanding in the mechanochromic mechanisms of 4, 4'-bipyridine, but also gives a helpful reference for the molecular designs of coordination polymers and co-crystals with 4, 4'-bipyridine involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2018.05.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!