Pentraxins are fluid phase pattern recognition molecules that form an important part of the innate immune defence and are conserved between fish and human. In Atlantic cod (Gadus morhua L.), two pentraxin-like proteins have been described, CRP-I and CRP-II. Here we show for the first time that these two CRP forms are post-translationally deiminated (an irreversible conversion of arginine to citrulline) and differ with respect to tissue specific localisation in cod ontogeny from 3 to 84 days post hatching. While both forms are expressed in liver, albeit at temporally differing levels, CRP-I shows a strong association with nervous tissue while CRP-II is strongly associated to mucosal tissues of gut and skin. This indicates differing roles for the two pentraxin types in immune responses and tissue remodelling, also elucidating novel roles for CRP-I in the nervous system. The presence of deimination positive bands for cod CRPs varied somewhat between mucus and serum, possibly facilitating CRP protein moonlighting, allowing the same protein to exhibit a range of biological functions and thus meeting different functional requirements in different tissues. The presented findings may further current understanding of the diverse roles of pentraxins in teleost immune defences and tissue remodelling, as well as in various human pathologies, including autoimmune diseases, amyloidosis and cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2018.05.014DOI Listing

Publication Analysis

Top Keywords

crp-i crp-ii
8
post-translationally deiminated
8
cod gadus
8
gadus morhua
8
tissue remodelling
8
tissue
5
pentraxins crp-i
4
crp-ii post-translationally
4
deiminated differ
4
differ tissue
4

Similar Publications

C-reactive protein (CRP) binds to phosphocholine (PCh)-containing substances and subsequently activates the complement system to eliminate the ligand. The PCh-binding function of CRP has been conserved throughout evolution from arthropods to humans. Human CRP, in its structurally altered conformation at acidic pH, also binds to amyloid-β (Aβ) and prevents the formation of Aβ fibrils.

View Article and Find Full Text PDF

Cryptococcus neoformans is an opportunistic fungal pathogen causing cryptococcal meningoencephalitis. Interestingly, the cell wall of C. neoformans contains chitosan, which is critical for its virulence and persistence in the mammalian host.

View Article and Find Full Text PDF

Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny.

Dev Comp Immunol

October 2018

Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK. Electronic address:

Pentraxins are fluid phase pattern recognition molecules that form an important part of the innate immune defence and are conserved between fish and human. In Atlantic cod (Gadus morhua L.), two pentraxin-like proteins have been described, CRP-I and CRP-II.

View Article and Find Full Text PDF

Coprophilous and litter-decomposing species (26 strains) of the genus Coprinus were screened for peroxidase activities by using selective agar plate tests and complex media based on soybean meal. Two species, Coprinus radians and C. verticillatus, were found to produce peroxidases, which oxidized aryl alcohols to the corresponding aldehydes at pH 7 (a reaction that is typical for heme-thiolate haloperoxidases).

View Article and Find Full Text PDF

The cyclic AMP receptor protein (CRP) activates transcription of the Escherichia coli acs gene, which encodes an acetate-scavenging enzyme required for fitness during periods of carbon starvation. Two promoters direct transcription of acs, the distal acsP1 and the proximal acsP2. In this study, we demonstrated that acsP2 can function as the major promoter and showed by in vitro studies that CRP facilitates transcription by "focusing" RNA polymerase to acsP2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!