The therapeutic potential of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is limited by immature functional features including low impulse propagation and reduced cell excitability. Key players regulating electrical activity are voltage-gated Na channels (Na1.5) and gap junctions built from connexin-43 (Cx43). Here we tested the hypothesis that enhanced Cx43 expression increases intercellular coupling and influences excitability by modulating Na1.5. Using transgenic approaches, Cx43 and Na1.5 localization and cell coupling were studied by confocal imaging. Na1.5 currents and action potentials (APs) were measured using the patch-clamp technique. Enhanced sarcolemmal Cx43 expression significantly improved intercellular coupling and accelerated dye transfer kinetics. Furthermore, Cx43 modulated Na1.5 function leading to significantly higher current and enhanced AP upstroke velocities, thereby improving electrical activity as measured by microelectrode arrays. These findings suggest a mechanistic link between cell coupling and excitability controlled by Cx43 expression in iPSC-CMs. Therefore, we propose Cx43 as novel molecular target for improving electrical properties of iPSC-CMs to match the functional properties of native myocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2018.05.010 | DOI Listing |
Acta Histochem Cytochem
December 2024
Department of Cell and Systems Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
Cell-to-cell communications are desirable for efficient functioning in endocrine cells. Gap junctions and paracrine factors are major mechanisms by which neighboring endocrine cells communicate with each other. The current experiment was undertaken to morphologically examine gap junction expression and developmental changes in rat adrenal medullary chromaffin (AMC) cells.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
Objectives: Dementia is becoming a major health problem in the world, and chronic brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as one major part of the blood-brain barrier (BBB), are activated during chronic cerebral blood flow hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or neuroprotective type A2.
View Article and Find Full Text PDFThis study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.
Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China. Electronic address:
Ethnopharmacological Relevance: Cornus officinalis Sieb. et Zucc has significant neuroprotective activity and has been widely studied for its potential to improve cognitive function. Our team's previous research has found that loganin isolated from Cornus officinalis has an antidepressant effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!