An increasing number of nonantibody format proteins are entering clinical development. However, one of the major hurdles for the production of nonantibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics, and genetic knockdowns, we have identified, out of the >700 known proteases in rodents, matriptase-1 as the major protease involved in the degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently, matriptase-1 was deleted in CHO-K1 cells using "transcription activator-like effector nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase (KO) cell line with strongly reduced or no proteolytic degradation activity toward a panel of recombinantly expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next-generation sequencing screening methods, and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.26731 | DOI Listing |
Viruses
January 2025
School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.
We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!