The inner ear of toothed whales (odontocetes) is known to have evolved particular shapes related to their abilities to echolocate and move under water. While the origin of these capacities is now more and more examined, thanks to new imaging techniques, little is still known about how informative inner ear shape could be to tackle phylogenetic issues or questions pertaining to the habitat preferences of extinct species. Here we show that the shape of the bony labyrinth of toothed whales provides key information both about phylogeny and habitat preferences (freshwater versus coastal and fully marine habitats). Our investigation of more than 20 species of extinct and modern odontocetes shows that the semi-circular canals are not very informative, in contrast to baleen whales, while the cochlea alone bears a strong signal. Inner ear shape thus provides a novel source of information to distinguish between morphologically convergent lineages (e.g. river dolphins).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959912 | PMC |
http://dx.doi.org/10.1038/s41598-018-26094-0 | DOI Listing |
Odontocetes are globally distributed and are foundational to the structure and function of marine food webs, and hence bycatch impacts from gillnet fishing need to be considered in the context of their conservation and population viability. Currently, global gillnet bycatch numbers are unknown yet are estimated to be the greatest in Asia, East Africa, and the west coasts of North and South America. Here we provide the first global meta-analyses of small- and large-scale gillnet bycatch estimates of odontocetes during 1990-2020, compiling population size, estimated gillnet bycatch, and conservation status in support of geographical and species-specific risk estimates.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb 10000, Croatia.
In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (Tursiops truncatus), 25 striped (Stenella coeruleoalba) and 6 Risso's dolphins (Grampus griseus). Cadmium concentrations in tissue samples ranged from 0.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA.
Apex marine predators, such as toothed whales and large petrels and albatrosses, ingest mercury (Hg) primarily in the form of methylmercury (MeHg) via prey consumption, which they detoxify as tiemannite (HgSe). However, it remains unclear how lower trophic level marine predators, termed mesopredators, with elevated Hg concentrations detoxify MeHg and what chemical species are formed. To address this need, we used high energy-resolution X-ray absorption near edge structure spectroscopy paired with nitrogen (N) and Hg stable isotopes to identify the chemical forms of Hg, Hg sources, and species-specific δHg isotopic values in emperor penguin, a mesopredator feeding primarily on Antarctic silverfish.
View Article and Find Full Text PDFJ Anat
December 2024
Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia, USA.
As fully aquatic mammals, hearing is arguably the most important sensory component of cetaceans. Increasingly, researchers have been harnessing computed tomography (CT) to investigate the details of the inner ear as they can provide clues to the hearing abilities of whales. We use microCT scans of a broad sampling of the ear bones (periotics) of primarily toothed whales (Odontoceti) to investigate the inner ear bony labyrinth shape and reconstruct hearing sensitivities among these cetaceans, including several taxa about which little is currently known.
View Article and Find Full Text PDFJ Mol Evol
December 2024
The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand.
Major evolutionary transitions, such as the shift of cetaceans from terrestrial to marine life, can put pressure on sensory systems to adapt to a new set of relevant stimuli. Relatively little is known about the role of smell in the evolution of mysticetes (baleen whales). While their toothed cousins, the odontocetes, lack the anatomical features to smell, it is less clear whether baleen whales have retained this sense, and if so, when the pressure on olfaction diverged in the cetacean evolutionary lineage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!