Growth of precancerous and cancer cells relies on their tolerance of oncogene-induced replication stress (RS). Translesion synthesis (TLS) plays an essential role in the cellular tolerance of various types of RS and bypasses replication barriers by employing specialized polymerases. However, limited information is available about the role of TLS polymerases in oncogene-induced RS. Here, we report that Polη, a Y-family TLS polymerase, promotes cellular tolerance of Myc-induced RS. Polη was recruited to Myc-induced RS sites, and Polη depletion enhanced the Myc-induced slowing and stalling of replication forks and the subsequent generation of double-strand breaks (DSBs). Overexpression of a catalytically dead Polη also promoted Myc-induced DSB formation. In the absence of Polη, Myc-induced DSB formation depended on MUS81-EME2 (the S-phase-specific endonuclease complex), and concomitant depletion of MUS81-EME2 and Polη enhanced RS and cell death in a synergistic manner. Collectively, these results indicate that Polη facilitates fork progression during Myc-induced RS, thereby helping cells tolerate the resultant deleterious effects. Additionally, the present study highlights the possibility of a synthetic sickness or lethality between Polη and MUS81-EME2 in cells experiencing Myc-induced RS.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.212183DOI Listing

Publication Analysis

Top Keywords

cellular tolerance
12
polη
9
polη y-family
8
translesion synthesis
8
polymerase promotes
8
promotes cellular
8
myc-induced
8
tolerance myc-induced
8
replication stress
8
myc-induced dsb
8

Similar Publications

Fluorescent probes are widely used in cellular imaging and disease diagnosis. Acting as substitute carriers, fluorescent probes can also be used to help transport drugs within cells. In this study, commonly used fluorophores, TAMRA (5-carboxytetramethylrhodamine), PBA (1-pyrenebutyric acid), NBD (nitrobenzoxadiazole), OG (Oregon Green), and CF (5-carboxyfluorescein) were conjugated with the dipeptide β-Ala-Lys, the peptide moiety of the well-established peptide transporter substrate β-Ala-Lys(AMCA) (AMCA: 7-amino-4-methyl-coumarin-3-acetic acid) by modifying it with respect to side-chain length and functional end groups.

View Article and Find Full Text PDF

Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs.

J Plant Physiol

January 2025

Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China. Electronic address:

Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻) were analyzed.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!