Unspecific peroxygenase (UPO) is a highly promiscuous biocatalyst, and its selective mono(per)oxygenase activity makes it useful for many synthetic chemistry applications. Among the broad repertory of library creation methods for directed enzyme evolution, genetic drift allows neutral mutations to be accumulated gradually within a polymorphic network of variants. In this study, we conducted a campaign of genetic drift with UPO in , so that neutral mutations were simply added and recombined With low mutational loading and an activity threshold of 45% of the parent's native function, mutant libraries enriched in folded active UPO variants were generated. After only eight rounds of genetic drift and DNA shuffling, we identified an ensemble of 25 neutrally evolved variants with changes in peroxidative and peroxygenative activities, kinetic thermostability, and enhanced tolerance to organic solvents. With an average of 4.6 substitutions introduced per clone, neutral mutations covered approximately 10% of the protein sequence. Accordingly, this study opens new avenues for UPO design by bringing together neutral genetic drift and DNA recombination Fungal peroxygenases resemble the peroxide shunt pathway of cytochrome P450 monoxygenases, performing selective oxyfunctionalizations of unactivated C-H bonds in a broad range of organic compounds. In this study, we combined neutral genetic drift and DNA shuffling to generate highly functional peroxygenase mutant libraries. The panel of neutrally evolved peroxygenases showed different activity profiles for peroxygenative substrates and improved stability with respect to temperature and the presence of organic cosolvents, making the enzymes valuable blueprints for emerging evolution campaigns. This association of DNA recombination and neutral drift is paving the way for future work in peroxygenase engineering and, from a more general perspective, to any other enzyme system heterologously expressed in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052263 | PMC |
http://dx.doi.org/10.1128/AEM.00808-18 | DOI Listing |
The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed.
View Article and Find Full Text PDFPeerJ
January 2025
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.
Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.
View Article and Find Full Text PDFGenetics
January 2025
Interfaculty Bioinformatics Unit, University of Bern, Bern 3012, Switzerland.
Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent.
View Article and Find Full Text PDFBiology (Basel)
January 2025
College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
The formation of animal breeds usually begins with a small subsample from their ancestral population. Deleterious mutations accumulate in the population under genetic drift, inbreeding, and artificial selection during the development and maintenance of traits desired by humans. White raccoon dogs are among the most popular breeds of farmed raccoon dogs, but white raccoon dogs are more susceptible to disease and have a lower reproductive ability.
View Article and Find Full Text PDFMol Ecol
January 2025
Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden.
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!