For a long time, the phenomenon known as the "tears of wine" was believed to be due only to the surface tension gradient (e.g., the Thomson-Marangoni stress on the fluid/fluid surface's dynamics of wetting) and gravity. We experimentally demonstrated that the wine tear formation is not solely due to the surface tension gradient; instead, the ridge instability triggers the wine tears. Pouring wine into a glass causes a wine film to form on the glass. The film drains down under gravity and a ridge forms at its upper part. Over time, the ridge becomes unstable. Under gravity, a necklace of droplets (tears) appears and slides down. Here, we present experimental evidence that the Plateau-Rayleigh-Taylor theory for the stability criterion of a horizontal annulus fluid column under small, exponentially growing capillary disturbances and the surface tension breakdown into droplets can also be applied to the stability of a horizontal fluid's (wine) ridge on a wetted solid, where gravity causes the droplets (tears) to slide down, resulting in the formation of a necklace of droplets ("tears"). The wine droplets ("tears") move down and up ("dance") due to the effects of the surface tension gradient and gravity. The process repeats itself for a while. Over time, the wine components (e.g., organic acids and tannins) adhere on the glass. The glass surface becomes less hydrophilic and the wine wets the glass less. The wine film on the glass becomes unstable, the ridge does not form, and the tears stop appearing. The knowledge gained from the present study will enhance our understanding of the wetting and spreading dynamics of fluid mixtures on solids. It will also benefit our understanding of fundamental phenomena (such as wetting and spreading) and applied technologies (such as painting, printing, cooling, and cleaning), as well as aid in the development of robust devices (such as the lab on a chip).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2018.05.001 | DOI Listing |
Eur J Pharm Biopharm
January 2025
Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver 91897, Mexico. Electronic address:
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.
View Article and Find Full Text PDFInsect Sci
January 2025
Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany.
Water striders inhabit the elastic surface tension film of water, sharing their environment with other aquatic organisms. Their survival relies heavily on swift maneuverability and navigation around floating obstacles, which aids in the exploration of their habitat and in escaping from potential threats. Their high agility is strongly based on the ability to execute precise turns, enabling effective directional control.
View Article and Find Full Text PDFData Brief
February 2025
Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
This dataset comprises a comprehensive collection of videos and images illustrating the fluid dynamics of swallowing and aspiration in a patient-specific pharyngolaryngeal model with varying epiglottis angles. The data also includes the physical properties of the fluids used, comprising dynamic viscosity, surface tension, and contact angle. Videos under varying swallowing conditions were collected to investigate the mechanisms underlying aspiration.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Neurosurgery Department, the First Affiliated Hospital of Ningbo University, Ningbo 315000, China. Electronic address:
Despite the worldwide prevalence of Parkinson's disease (PD), there are currently no effective methods for treating or preventing α-synucleinopathy. Research has demonstrated that small molecules are capable of preventing α-synuclein aggregation and the associated neurotoxicity. Nonetheless, the specific anti-amyloid mechanism of these compounds is not thoroughly comprehended in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!