Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays.

Phys Rev E

Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine, CP 231, 1050 Bruxelles, Belgium.

Published: March 2018

Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.032211DOI Listing

Publication Analysis

Top Keywords

nonlinear systems
12
time delays
12
algebraic expressions
12
fixed points
12
bifurcation lines
8
systems independent
8
independent time
8
stability fixed
8
parameter regions
8
characteristic equation
8

Similar Publications

Work in many systems has shown large-scale changes in gene expression during aging. However, many studies employ just two, arbitrarily-chosen timepoints at which to measure expression, and can only observe an increase or a decrease in expression between "young" and "old" animals, failing to capture any dynamic, non-linear changes that occur throughout the aging process. We used RNA sequencing to measure expression in male head tissue at 15 timepoints through the lifespan of an inbred strain.

View Article and Find Full Text PDF

Background: Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in ACM have greatly reduced electrical coupling at gap junctions and reduced Na current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced.

View Article and Find Full Text PDF

Unlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Strain-Reduced Inversion Symmetry in Ultrathin SnPSe Crystals for Giant Bulk Piezophotovoltaic Generation.

ACS Nano

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!