This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.032209DOI Listing

Publication Analysis

Top Keywords

localized modes
12
edge states
8
phononic lattices
8
topologically protected
8
amplitude-dependent topological
4
topological edge
4
nonlinear
4
states nonlinear
4
nonlinear phononic
4
lattices work
4

Similar Publications

Purpose: Neurotypical individuals show a robust "global precedence effect (GPE)" when processing hierarchically structured visual information. However, the auditory domain remains understudied. The current research serves to fill the knowledge gap on auditory global-local processing across the broader autism phenotype under the tonal language background.

View Article and Find Full Text PDF

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

We introduce an effective field theory (EFT) for conformal impurity by considering a pair of transversely displaced impurities and integrating out modes with mass inversely proportional to the separation distance. This EFT captures the universal signature of the impurity seen by a heavy local operator. We focus on the case of conformal boundaries and derive universal formulas from this EFT for the boundary structure constants at high energy.

View Article and Find Full Text PDF

The recent surge of interest in moiré photonics arises from the possibility of exploring many groundbreaking physical phenomena in photonics. These phenomena include photonic topological states and magic-angle lasing, which offer an attractive platform for manipulating the flow and confinement of light from remarkably simple device geometries. In this work, we fabricate a series of metallic moiré superlattices supporting moiré plasmon polaritons and explore the moiré-potential induced plasmonic resonances.

View Article and Find Full Text PDF

A transversely isotropic diode-pumped solid-state laser is used to obtain an orthogonally dual-polarization nonplanar circular mode (NCM) under off-axis pumping in the strictly degenerate cavity. Each polarized component of the NCM outside the cavity is revealed to be individually localized on the ray orbits forming a nonplanar surface, in which the transverse patterns display multiple spots well positioned on a circular structure. An analytical representation is established to explore polarization-resolved components of the NCM by utilizing the Gaussian wave packet to directly correlate with geometrical rays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!