Heat transport in oscillator chains with long-range interactions coupled to thermal reservoirs.

Phys Rev E

Dipartimento di Fisica e Astronomia and CSDC, Università di Firenze, via G. Sansone 1 I-50019 Sesto Fiorentino, Italy.

Published: March 2018

We investigate thermal conduction in arrays of long-range interacting rotors and Fermi-Pasta-Ulam (FPU) oscillators coupled to two reservoirs at different temperatures. The strength of the interaction between two lattice sites decays as a power α of the inverse of their distance. We point out the necessity of distinguishing between energy flows towards or from the reservoirs and those within the system. We show that energy flow between the reservoirs occurs via a direct transfer induced by long-range couplings and a diffusive process through the chain. To this aim, we introduce a decomposition of the steady-state heat current that explicitly accounts for such direct transfer of energy between the reservoir. For 0≤α<1, the direct transfer term dominates, meaning that the system can be effectively described as a set of oscillators each interacting with the thermal baths. Also, the heat current exchanged with the reservoirs depends on the size of the thermalized regions: In the case in which such size is proportional to the system size N, the stationary current is independent on N. For α>1, heat transport mostly occurs through diffusion along the chain: For the rotors transport is normal, while for FPU the data are compatible with an anomalous diffusion, possibly with an α-dependent characteristic exponent.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.032102DOI Listing

Publication Analysis

Top Keywords

heat transport
8
direct transfer
8
transport oscillator
4
oscillator chains
4
chains long-range
4
long-range interactions
4
interactions coupled
4
coupled thermal
4
reservoirs
4
thermal reservoirs
4

Similar Publications

Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.

View Article and Find Full Text PDF

Vegetation-climate feedbacks across scales.

Ann N Y Acad Sci

January 2025

Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.

View Article and Find Full Text PDF

Introduction: Space agencies will embark on manned journeys to Mars on smaller vehicles than those used previously. In-flight exercise on those flights must abate the adverse effects microgravity (μG) has on humans. Due to space constraints on these vehicles, a single exercise device must address multiple fitness needs.

View Article and Find Full Text PDF

Heat Transport Hysteresis Generated Through Frequency Switching of a Time-Dependent Temperature Gradient.

Entropy (Basel)

December 2024

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

A stochastic energetics framework is applied to examine how periodically shifting the frequency of a time-dependent oscillating temperature gradient affects heat transport in a nanoscale molecular model. We specifically examine the effects that frequency switching, i.e.

View Article and Find Full Text PDF

Entropy Production in an Electro-Membrane Process at Underlimiting Currents-Influence of Temperature.

Entropy (Basel)

December 2024

Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain.

The entropy production in the polarization phenomena occurring in the underlimiting regime, when an electric current circulates through a single cation-exchange membrane system, has been investigated in the 3-40 °C temperature range. From the analysis of the current-voltage curves and considering the electro-membrane system as a unidimensional heterogeneous system, the total entropy generation in the system has been estimated from the contribution of each part of the system. Classical polarization theory and the irreversible thermodynamics approach have been used to determine the total electric potential drop and the entropy generation, respectively, associated with the different transport mechanisms in each part of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!