In response to a concentration gradient of chemoattractant, E. coli bacterium modulates the rotational bias of flagellar motors which control its run-and-tumble motion, to migrate towards regions of high chemoattractant concentration. Presence of stochastic noise in the biochemical pathway of the cell has important consequences on the switching mechanism of motor bias, which in turn affects the runs and tumbles of the cell in a significant way. We model the intracellular reaction network in terms of coupled time evolution of three stochastic variables-kinase activity, methylation level, and CheY-P protein level-and study the effect of methylation noise on the chemotactic performance of the cell. In presence of a spatially varying nutrient concentration profile, a good chemotactic performance allows the cell to climb up the concentration gradient quickly and localize in the nutrient-rich regions in the long time limit. Our simulations show that the best performance is obtained at an optimal noise strength. While it is expected that chemotaxis will be weaker for very large noise, it is counterintuitive that the performance worsens even when noise level falls below a certain value. We explain this striking result by detailed analysis of CheY-P protein level statistics for different noise strengths. We show that when the CheY-P level falls below a certain (noise-dependent) threshold the cell tends to move down the concentration gradient of the nutrient, which has a detrimental effect on its chemotactic response. This threshold value decreases as noise is increased, and this effect is responsible for noise-induced enhancement of chemotactic performance. In a harsh chemical environment, when the nutrient degrades with time, the amount of nutrient intercepted by the cell trajectory is an effective performance criterion. In this case also, depending on the nutrient lifetime, we find an optimum noise strength when the performance is at its best.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.97.032420 | DOI Listing |
Front Immunol
January 2025
School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Introduction: The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon.
Methods: We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination.
Results: We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3.
J Anim Sci Biotechnol
January 2025
Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.
Background: Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems, making them susceptible to infectious diseases. The yolk plays an important role in early immune defence by showing relevant antioxidant and passive immunity capabilities during broiler embryonic development. The immunomodulatory effects of phytogenic compound carvacrol have been widely reported.
View Article and Find Full Text PDFLab Chip
January 2025
James Watt School of Engineering, Advanced Research Centre (ARC), University of Glasgow, Chapel Lane, Glasgow G11 6EW, UK.
Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FF-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose.
View Article and Find Full Text PDFJ Leukoc Biol
December 2024
Infectious and Immune Diseases Division, CHU de Québec Research Center, Laval University, Québec, QC, Canada.
Introduction: Granulocyte concentrates (GC) are leukocyte preparations enriched in neutrophils that can potentially save neutropenic patients from life-threatening, antimicrobial-resistant infections. The main challenge of GC transfusions is preserving the viability and antimicrobial activity of neutrophils beyond 24 h to reduce the logistical burden on collection centers and increase the availability of this cell therapy. Thus, the aim of this study was to explore extending the ex vivo viability and antimicrobial activity of GC neutrophils up to 72 h with a unique combination of the clinically-approved additives Plasma-Lyte, SAGM, AS-3 and Alburex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!