A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Critical neural networks with short- and long-term plasticity. | LitMetric

Critical neural networks with short- and long-term plasticity.

Phys Rev E

ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Zürich, Switzerland.

Published: March 2018

In recent years self organized critical neuronal models have provided insights regarding the origin of the experimentally observed avalanching behavior of neuronal systems. It has been shown that dynamical synapses, as a form of short-term plasticity, can cause critical neuronal dynamics. Whereas long-term plasticity, such as Hebbian or activity dependent plasticity, have a crucial role in shaping the network structure and endowing neural systems with learning abilities. In this work we provide a model which combines both plasticity mechanisms, acting on two different time scales. The measured avalanche statistics are compatible with experimental results for both the avalanche size and duration distribution with biologically observed percentages of inhibitory neurons. The time series of neuronal activity exhibits temporal bursts leading to 1/f decay in the power spectrum. The presence of long-term plasticity gives the system the ability to learn binary rules such as xor, providing the foundation of future research on more complicated tasks such as pattern recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.97.032312DOI Listing

Publication Analysis

Top Keywords

long-term plasticity
12
critical neuronal
8
plasticity
6
critical neural
4
neural networks
4
networks short-
4
short- long-term
4
plasticity years
4
years organized
4
organized critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!