Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drugs which are commonly smoked or sniffed (e.g. cocaine), can contaminate hair through smoke or dust; therefore testing for metabolites, especially hydroxy metabolites, is highly recommended. The presence of hydroxy metabolites in street-cocaine (COC) has been discussed. To check if detection of hydroxy metabolites definitely proves ingestion, the presence of these metabolites in street COC samples has to be checked. It is expected that the more hydrophilic hydroxy metabolites of COC are incorporated into the hair-matrix to a lesser extent. For this study 576 COC positive hair samples (≥0.1ng COC/mg hair) were analysed by LC-MS/MS for benzoylecgonine (BE), norcocaine (NC), cocaethylene (CE), ortho-, meta- and para-hydroxy COC (o-, m-, p-OH-COC), meta- and para-hydroxy BE (m-, p-OH-BE), and meta- and para-hydroxy NC (m-, p-OH-NC). The results were compared with the respective metabolite/COC concentration ratios in 146 street COC samples, confiscated by the Bavarian police. Peak areas were used to estimate BE/COC, NC/COC, CE/COC and hydroxy metabolites/COC. Similar metabolic ratios were found for o-OH-COC in 88% of the samples, but for p-OH-COC and m-OH-COC only in 5.1% and 6.8%, respectively. Notably, p- and m-OH-BE as well as p- and m-OH-NC could not be identified from seized samples. We propose that area ratios exceeding the ratios of street COC more than twice or identification of OH-BE and OH-NC enable to differentiate COC consumption from contamination. Using these criteria, consumption of the drug could be proven in 92% of COC positive samples. As detection of meta- and para-hydroxy metabolites using the above mentioned criteria is a reliable tool to distinguish between ingestion and external contamination, it is recommended to implement their measurement into daily routine work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2018.04.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!