The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015)NATUAS0028-083610.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e^{*}/e=1/2. This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.186801 | DOI Listing |
Biosens Bioelectron
March 2025
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan. Electronic address:
Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
Molecular junctions-whether actual single molecules in nanowire break junctions or artificial molecules realized in coupled quantum dot devices-offer unique functionality due to their orbital complexity, strong electron interactions, gate control, and many-body effects from hybridization with the external electronic circuit. Inverse design involves finding candidate structures that perform a desired function optimally. Here we develop an inverse design strategy for generalized quantum impurity models describing molecular junctions, and as an example, use it to demonstrate that many-body quantum interference can be leveraged to realize the two-channel Kondo critical point in simple 4- or 5-site molecular moieties.
View Article and Find Full Text PDFPhys Rev Lett
July 2024
Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA and Department of Physics and Astronomy, Iowa State University, 12 Physics Hall, Ames, Iowa 50011, USA.
The two-channel Kondo lattice likely hosts a rich array of phases, including hastatic order, a channel symmetry breaking heavy Fermi liquid. We revisit its one-dimensional phase diagram using density matrix renormalization group and, in contrast to previous work, find algebraic hastatic orders generically for stronger couplings. These are heavy Tomonaga-Luttinger liquids with nonanalyticities at Fermi vectors captured by hastatic density waves.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2023
Department of Physical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, W.B. 741246, India.
We study the overscreened multi-channel Kondo (MCK) model using the recently developed unitary renormalisation group technique. Our results display the importance of ground state degeneracy in explaining various important properties like the breakdown of screening and the presence of local non-Fermi liquids (NFLs). The impurity susceptibility of the intermediate coupling fixed point Hamiltonian in the zero-bandwidth (or star graph) limit shows a power-law divergence at low temperature.
View Article and Find Full Text PDFPhys Rev Lett
March 2023
Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA.
Observing that several U and Ce based candidate triplet superconductors share a common structural motif, with pairs of magnetic atoms separated by an inversion center, we hypothesize a triplet pairing mechanism based on an interplay of Hund's and Kondo interactions that is unique to this structure. In the presence of Hund's interactions, valence fluctuations generate a triplet superexchange between electrons and local moments. The offset from the center of symmetry allows spin-triplet pairs formed by the resulting Kondo effect to delocalize onto the Fermi surface, precipitating superconductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!