Noncovalent Grafting of a Dy Single-Molecule Magnet onto Chemically Modified Multiwalled Carbon Nanotubes.

Inorg Chem

Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science , Palacký University in Olomouc, Šlechtitelů 27 , 78371 Olomouc , Czech Republic.

Published: June 2018

While synthetic methods for the grafting of nanoparticles or photoactive molecules onto carbon nanotubes (CNTs) have been developed in the last years, a very limited number of reports have appeared on the grafting of single-molecule magnets (SMMs) onto CNTs. There are many potential causes, mainly focused on the fact that the attachment of molecules on surfaces remains not trivial and their magnetic properties are significantly affected upon attachment. Nevertheless, implementation of this particular type of hybrid material in demanding fields such as spintronic devices makes of utmost importance the investigation of new synthetic protocols for effective grafting. In this paper, we demonstrate a new experimental protocol for the noncovalent grafting of Dy SMM, [Dy(NO)(saph)(DMF)], where Hsaph = N-salicylidene- o-aminophenol and DMF = N, N-dimethylformamide, onto the surface of functionalized multiwalled CNTs (MWCNTs). We present a simple wet chemical method, followed by an extensive washing protocol, where the cross-referencing of data from high-resolution transmission electron microscopy combined with electron energy loss spectroscopy, conventional magnetic measurements (direct and alternating current), X-ray photoelectron spectroscopy, and Raman spectroscopy was used to investigate the physical properties, chemical nature, and overall magnetic behavior of the resulting hybrids. A key point to the whole synthesis involves the functionalization of MWCNTs with carboxylic groups, which proved to be a powerful strategy for enhancing the ability to process MWCNTs and facilitating the preparation of hybrid composites. While in the majority of analogous hybrid materials the raw carbon material (multiwalled or single-walled nanotubes) is heavily treated to minimize the contribution of contaminant traces of magnetic nanoparticles with important effects on their electronic properties, this method can lead easily to elimination of the largest part of the impurities and provide an effective way to investigate/discriminate the magnetic contribution of the SMM molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b00472DOI Listing

Publication Analysis

Top Keywords

noncovalent grafting
8
grafting single-molecule
8
carbon nanotubes
8
magnetic
5
single-molecule magnet
4
magnet chemically
4
chemically modified
4
modified multiwalled
4
multiwalled carbon
4
nanotubes synthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!