SugarQb (www.imba.oeaw.ac.at/sugarqb) is a freely available collection of computational tools for the automated identification of intact glycopeptides from high-resolution HCD MS/MS datasets in the Proteome Discoverer environment. We report the migration of SugarQb to the latest and free version of Proteome Discoverer 2.1, and apply it to the analysis of PNGase F-resistant N-glycopeptides from mouse embryonic stem cells. The analysis of intact glycopeptides highlights unexpected technical limitations to PNGase F-dependent glycoproteomic workflows at the proteome level, and warrants a critical reinterpretation of seminal datasets in the context of N-glycosylation-site prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6055662PMC
http://dx.doi.org/10.1002/pmic.201700436DOI Listing

Publication Analysis

Top Keywords

proteome discoverer
12
analysis pngase
8
pngase f-resistant
8
f-resistant n-glycopeptides
8
intact glycopeptides
8
n-glycopeptides sugarqb
4
proteome
4
sugarqb proteome
4
discoverer reveals
4
reveals cryptic
4

Similar Publications

In recent years, discovery proteomics has emerged as a pivotal tool in biological research, especially when studying the intricate relationships among multiple organisms. To delve deeper into these interactions, we pioneered a bottom-up proteomics workflow. Using nanoLC-MS/MS and a label-free quantification method, this work specifically examines the differential protein expression in fleas (Ctenocephalides felis felis) that have been experimentally infected with Bartonella henselae, the causative agent of cat scratch disease (CSD).

View Article and Find Full Text PDF

Omics analysis reveals galectin-3 to be a potential key regulator of allergic inflammation in hereditary angioedema.

J Allergy Clin Immunol Glob

February 2025

Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, Clinical Translational Research Center, University at Buffalo, Buffalo, NY.

Background: Hereditary angioedema (HAE) is a rare inherited disorder that predisposes an individual to develop vasogenic edema. Bradykinin release, which increases vascular permeability, results in angioedema. C1 esterase inhibitor (C1-INH) is a major regulator of critical enzymes involved in bradykinin generation and mutations in genes that encode the C1 inhibitor of complement factor 1, which prevent its synthesis (type I HAE), form a dysfunctional protein (type II HAE), or have normal functioning C1-INH (type III HAE, aka HAE-III).

View Article and Find Full Text PDF

Ultradeep O-GlcNAc proteomics reveals widespread O-GlcNAcylation on tyrosine residues of proteins.

Proc Natl Acad Sci U S A

November 2024

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007.

As a unique type of glycosylation, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on Ser/Thr residues of proteins was discovered 40 y ago. O-GlcNAcylation is catalyzed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove O-GlcNAc, respectively. O-GlcNAcylation is an essential glycosylation that regulates the functions of many proteins in virtually all cellular processes.

View Article and Find Full Text PDF

Background: COVID19 is a pandemic that has affected millions around the world since March 2020. While many patients recovered completely with mild illness, many patients succumbed to various organ morbidities. This heterogeneity in the clinical presentation of COVID19 infection has posed a challenge to clinicians around the world.

View Article and Find Full Text PDF
Article Synopsis
  • Plants use pattern recognition receptors (PRRs) like EFR and FLS2 to detect bacterial pathogens and activate their immune response via RBOHD.
  • QSK1, identified as a protein associated with the PRR-RBOHD complex, acts as a negative regulator by downregulating EFR and FLS2, leading to suppressed immunity.
  • The bacterial effector HopF2Pto manipulates QSK1 to inhibit immune responses, demonstrating the sophisticated interplay between plant defense mechanisms and pathogen strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!