Cucumber (Cucumis sativus L.) target leaf spot (TLS), which is caused by the fungus Corynespora cassiicola (C. cassiicola), seriously endangers the production of cucumber. In this assay, we performed comprehensive sequencing of the transcriptome and microRNAs (miRNAs) of a resistant cucumber (Jinyou 38) during C. cassiicola inoculation using the Illumina NextSeq 500 platform. The possible genes related to the response to C. cassiicola were associated with plant hormones, transcription factors, primary metabolism, Ca signaling pathways, secondary metabolism and defense genes. In total, 150 target genes of these differentially expressed miRNAs were predicted by the bioinformatic analysis. By analyzing the function of the target genes, several candidate miRNAs that may be related to the response to C. cassiicola stress were selected. We also predicted 7 novel miRNAs and predicted their target genes. Moreover, the expression patterns of the candidate genes and miRNAs were tested by quantitative real-time RT-PCR. According to the analysis, genes and miRNAs associated with secondary metabolism, particularly the phenylpropanoid biosynthesis pathway, may play a major role in the resistance to C. cassiicola stress in cucumber. These results offer a foundation for future studies exploring the mechanism and key genes of resistance to cucumber TLS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958113 | PMC |
http://dx.doi.org/10.1038/s41598-018-26080-6 | DOI Listing |
Physiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.
Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.
Sci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Sci Rep
January 2025
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.
The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!