Long and deep dives in marine mammals are enabled by high mass-specific oxygen stores and the dive response, which reduces oxygen consumption in concert with increased peripheral vasoconstriction and a lowered heart rate during dives. Diving heart rates of pinnipeds are highly variable and modulated by many factors, such as breath holding (apnea), pressure, swimming activity, temperature and even cognitive control. However, the individual effects of these factors on diving heart rate are poorly understood because of the difficulty of parsing their relative contributions in diving pinnipeds. Here, we examined the effects of apnea and external sensory inputs as autonomic drivers of bradycardia. Specifically, we hypothesized that (1) water stimulation of facial receptors would - as is the case for terrestrial mammals - enhance the dive response, (2) increasing the facial area stimulated would lead to a more intense bradycardia, and (3) cold water would elicit a more pronounced bradycardia than warm water. Three harbor seals () and a California sea lion () were trained to breath hold in air and with their heads submerged in a basin with variable water level and temperature. We show that bradycardia occurs during apnea without immersion. We also demonstrate that bradycardia is strengthened by both increasing the area of facial submersion and colder water. Thus, we conclude that the initiation of the dive response in pinnipeds is more strongly related to breath holding than in terrestrial mammals, but the degree of the dive response is potentiated autonomically via stimulation of facial mechano- and thermo-receptors upon submergence.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.176545DOI Listing

Publication Analysis

Top Keywords

dive response
20
response pinnipeds
8
heart rate
8
diving heart
8
breath holding
8
stimulation facial
8
terrestrial mammals
8
response
5
bradycardia
5
water
5

Similar Publications

Sex-based variations in breath-holding: oxygen storage and diving response among non-divers.

Front Physiol

January 2025

Department of Health Sciences, Environmental Physiology Group, Mid Sweden University, Östersund, Sweden.

Breath-hold diving performances are typically better in men than in women. However, it is still being determined if there are differences in the physiological responses to breath-holding between the sexes. We conducted a study comparing the maximum breath-hold duration, heart rate (HR) reduction, peripheral oxygen saturation (SpO), and spleen volume and contraction in 37 men and 44 women, all of whom had no prior breath-holding experience.

View Article and Find Full Text PDF

Microbes experience dynamic conditions in natural habitats as well as in engineered environments, such as large-scale bioreactors, which exhibit increased mixing times and inhomogeneities. While single perturbations have been studied for several organisms and substrates, the impact of recurring short-term perturbations remains largely unknown. In this study, we investigated the response of Saccharomyces cerevisiae to repetitive gradients of four different sugars: glucose, fructose, sucrose, and maltose.

View Article and Find Full Text PDF

This review emphasises the importance of the cardiovascular response to facial cooling (FC) and breath holding in both sexes. The trigemino-cardiac reflex, triggered by FC, reduces heart rate (HR) and constricts blood vessels. When combined with breath holding, this effect intensifies, enhancing the cardiodepressive impact.

View Article and Find Full Text PDF

Shifting Paradigms: A Deep Dive Into Public Perceptions of Gender-affirming Surgery.

Plast Reconstr Surg Glob Open

January 2025

Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

Background: Given the growing demand for gender-affirming surgery (GAS) in recent years, it is essential to explore the public perceptions of GAS. Understanding the public's opinions and attitudes toward GAS will provide valuable insights for shaping educational initiatives to enhance public knowledge and awareness.

Methods: This cross-sectional study used the Prolific Academic platform to distribute an online survey among adult participants residing in the United States in August 2023.

View Article and Find Full Text PDF

In the wild, stressors occur with varying likelihood throughout the day, leading animals to evolve plastic stress responses that exhibit circadian rhythmicity. In mammals, studies have revealed that the circadian plasticity of stress response may differ with age. However, such developmental effects have been largely overlooked in other vertebrate groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!