Prostaglandin F Facilitates Hepatic Glucose Production Through CaMKIIγ/p38/FOXO1 Signaling Pathway in Fasting and Obesity.

Diabetes

Department of Pharmacology, School of Basic Medical Sciences, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, People's Republic of China

Published: September 2018

Gluconeogenesis is drastically increased in patients with type 2 diabetes and accounts for increased fasting plasma glucose concentrations. Circulating levels of prostaglandin (PG) F are also markedly elevated in diabetes; however, whether and how PGF regulates hepatic glucose metabolism remain unknown. Here, we demonstrated that PGF receptor (F-prostanoid receptor [FP]) was upregulated in the livers of mice upon fasting- and diabetic stress. Hepatic deletion of the FP receptor suppressed fasting-induced hepatic gluconeogenesis, whereas FP overexpression enhanced hepatic gluconeogenesis in mice. FP activation promoted the expression of gluconeogenic enzymes (PEPCK and glucose-6-phosphatase) in hepatocytes in a FOXO1-dependent manner. Additionally, FP coupled with G in hepatocytes to elicit Ca release, which activated Ca/calmodulin-activated protein kinase IIγ (CaMKIIγ) to increase FOXO1 phosphorylation and subsequently accelerate its nuclear translocation. Blockage of p38 disrupted CaMKIIγ-induced FOXO1 nuclear translocation and abrogated FP-mediated hepatic gluconeogenesis in mice. Moreover, knockdown of hepatic FP receptor improved insulin sensitivity and glucose homeostasis in / mice. FP-mediated hepatic gluconeogenesis via the CaMKIIγ/p38/FOXO1 signaling pathway, indicating that the FP receptor might be a promising therapeutic target for type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db17-1521DOI Listing

Publication Analysis

Top Keywords

hepatic gluconeogenesis
16
hepatic
8
hepatic glucose
8
camkiiγ/p38/foxo1 signaling
8
signaling pathway
8
type diabetes
8
gluconeogenesis mice
8
nuclear translocation
8
fp-mediated hepatic
8
gluconeogenesis
5

Similar Publications

The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced.

View Article and Find Full Text PDF

Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis.

Cell Rep

January 2025

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Endurance training enhances hepatic gluconeogenesis, especially in the presence of norepinephrine (NE), even without other hormones.
  • Trained rat liver cells show significantly higher gluconeogenesis and lactate uptake compared to untrained controls, particularly when stimulated by NE.
  • Additionally, trained hepatocytes exhibit increased glucose production in the presence of palmitate, underscoring the metabolic adaptations resulting from endurance training.
View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!