In the present study, we have synthesized chitin-glucan-aldehyde-quercetin (chi-glu-ald-que) conjugate via condensation reaction. Synthesis of chitin-glucan-aldehyde (chi-glu-ald) complex was facilitated by the oxidation of chitin-glucan (chi-glu) complex. Formation of conjugate was confirmed by Proton nuclear magnetic resonance spectroscopy (H NMR) and Fourier-transform infrared spectroscopy (FT-IR). Morphological studies showed that after grafting of quercetin, several changes on surface were depicted and a more crystalline nature was observed. The chi-glu-ald-que conjugate displayed strong antioxidant activity. It showed 69% of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, DPPH* scavenging activity at 1 mg/mL and 72% of 2, 2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation, ABTS* scavenging activity at 1 mg/mL concentration, which are much higher than that of chi-glu complex. The anticancer activity of chi-glu-ald-que conjugate was performed in Macrophage cancer cell lines (J774) and biocompatibility was performed in Peripheral blood mononuclear cells (PBMCs). The chi-glu-ald-que conjugate showed excellent cytotoxicity against J774 cell lines but no cytotoxicity towards PBMCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.03.092 | DOI Listing |
Carbohydr Polym
August 2018
Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
In the present study, we have synthesized chitin-glucan-aldehyde-quercetin (chi-glu-ald-que) conjugate via condensation reaction. Synthesis of chitin-glucan-aldehyde (chi-glu-ald) complex was facilitated by the oxidation of chitin-glucan (chi-glu) complex. Formation of conjugate was confirmed by Proton nuclear magnetic resonance spectroscopy (H NMR) and Fourier-transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!