Controlled, three-dimensional (3D) cell culture systems are of growing interest for both tissue regeneration and disease, including cancer, enabling hypothesis testing about the effects of microenvironment cues on a variety of cellular processes, including aspects of disease progression. In this work, we encapsulate and culture in three dimensions different cancer cell lines in a synthetic extracellular matrix (ECM), using mild and efficient chemistry. Specifically, harnessing the nucleophilic addition of thiols to activated alkynes, we have created hydrogel-based materials with multifunctional poly(ethylene glycol) (PEG) and select biomimetic peptides. These materials have definable, controlled mechanical properties (G' = 4-10 kPa) and enable facile incorporation of pendant peptides for cell adhesion, relevant for mimicking soft tissues, where polymer architecture allows tuning of matrix degradation. These matrices rapidly formed in the presence of sensitive breast cancer cells (MCF-7) for successful encapsulation with high cell viability, greatly improved relative to that observed with the more widely used radically-initiated thiol-ene crosslinking chemistry. Furthermore, controlled matrix degradation by both bulk and local mechanisms, ester hydrolysis of the polymer network and cell-driven enzymatic hydrolysis of cell-degradable peptide, allowed cell proliferation and the formation of cell clusters within these thiol-yne hydrogels. These studies demonstrate the importance of chemistry in ECM mimics and the potential thiol-yne chemistry has as a crosslinking reaction for the encapsulation and culture of cells, including those sensitive to radical crosslinking pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699181 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2018.04.046 | DOI Listing |
Adv Sci (Weinh)
January 2025
ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea.
Background: Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment.
Methods: pCAM was produced from porcine cartilage through physicochemical processing.
Sci Rep
January 2025
Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland.
Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.
View Article and Find Full Text PDFACS Nano
January 2025
Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China.
The self-assembly of molecules into highly ordered architectures is a ubiquitous and natural process, wherein molecules spontaneously organize into large structures to perform diverse functions. Drawing inspiration from the formation of natural nanostructures, cell-mediated self-assembly has been developed to create functional assemblies both inside and outside living cells. These techniques have been employed to regulate the cellular world by leveraging the dynamic intracellular and extracellular microenvironment.
View Article and Find Full Text PDFPharmaceutics
December 2024
Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!