This study proposes a tactile estimation method of molded plastic plates based on human tactile perception characteristics. Plastic plates are often used in consumer products. The tactile evaluation plays an important role in product development. However, physical quantities not taking into account human tactile perception have been employed in previous tactile estimation procedures. Hence, in this study, we adopted the vibrational thresholds of the mechanoreceptive units-FA I, FA II, SA I and SA II-for stimuli detection and developed a tactile estimation method for plastic plates that clarified the mechanoreceptive units related to tactile sensation. The developed tactile sensor consists of a base and a silicone rubber pad that contains strain gauges in it. We detected vibration during touch by the sensor and calculated the estimation of the firing values of the cutaneous mechanoreceptors, which are the essential data obtained by humans during tactile perception, in comparison to the amplitude spectrum of the vibration with the threshold amplitude of each mechanoreceptive unit. Simultaneously, we calculated the relationship between the normal and tangential forces recorded while the sensor ran over the samples. As a result of stepwise linear regression analysis using these values as explanatory variables, the evaluation scores for were successfully estimated using the firing value of FA II and the relationship between normal/tangential forces, and the evaluation scores for were estimated using the SA I firing value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981637PMC
http://dx.doi.org/10.3390/s18051588DOI Listing

Publication Analysis

Top Keywords

tactile estimation
16
plastic plates
16
tactile perception
12
tactile
10
molded plastic
8
plates based
8
mechanoreceptive units
8
estimation method
8
human tactile
8
developed tactile
8

Similar Publications

A tactile perception method with flexible grating structural color.

Natl Sci Rev

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.

Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors.

View Article and Find Full Text PDF

Feeling a texture typically involves sliding the fingers of a hand across that surface or rubbing the surface between the thumb and another digit. Texture signals appear to be integrated across the digits of a hand with perceived roughness at one finger swayed in the direction of texture touched by another finger of the same hand. To date, one study has reported similar integrative effects when the pairs of digits belong to different hands.

View Article and Find Full Text PDF

Introduction: Dynamic modulation of grip occurs mainly within the major structures of the brain stem, in parallel with cortical control. This basic, but fundamental level of the brain, is robust to ill-formed feedback and to be useful, it may not require all the perceptual information of feedback we are consciously aware. This makes it viable candidate for using peripheral nerve stimulation (PNS), a form of tactile feedback that conveys intensity and location information of touch well but does not currently reproduce other qualities of natural touch.

View Article and Find Full Text PDF

Hardware Implementation for Triaxial Contact-Force Estimation from Stress Tactile Sensor Arrays: An Efficient Design Approach.

Sensors (Basel)

December 2024

Programa de Doctorado en Ingeniería Mecatrónica, Departamento de Electrónica, Universidad de Málaga, 29071 Malaga, Spain.

This paper presents a contribution to the state of the art in the design of tactile sensing algorithms that take advantage of the characteristics of generalized sparse matrix-vector multiplication to reduce the area, power consumption, and data storage required for real-time hardware implementation. This work also addresses the challenge of implementing the hardware to execute multiaxial contact-force estimation algorithms from a normal stress tactile sensor array on a field-programmable gate-array development platform, employing a high-level description approach. This paper describes the hardware implementation of the proposed sparse algorithm and that of an algorithm previously reported in the literature, comparing the results of both hardware implementations with the software results already validated.

View Article and Find Full Text PDF

Design and Validation of an Obstacle Contact Sensor for Aerial Robots.

Sensors (Basel)

December 2024

Department of Electrical and Photonics Engineering Automation and Control, Technical University of Denmark, Elektrovej, 2800 Kongens Lyngby, Denmark.

Obstacle contact detection is not commonly employed in autonomous robots, which mainly depend on avoidance algorithms, limiting their effectiveness in cluttered environments. Current contact-detection techniques suffer from blind spots or discretized detection points, and rigid platforms further limit performance by merely detecting the presence of a collision without providing detailed feedback. To address these challenges, we propose an innovative contact sensor design that improves autonomous navigation through physical contact detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!