Six2 is negatively correlated with good prognosis and decreases 5-FU sensitivity via suppressing E-cadherin expression in hepatocellular carcinoma cells.

Biomed Pharmacother

Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, PR China; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, NO.79, Kangning Road, Zhuhai, Gongdong, 519000, PR China. Electronic address:

Published: August 2018

This work aims to study the roles and related mechanisms of six2 in 5-FU sensitivity of hepatocellular carcinoma (HCC) cells. KM-Plotter analysis showed that HCC patients with higher six2 expression levels had shorter overall survival. Six2 expression was higher in clinical HCC tissues than in normal tissues, and was negatively correlated with E-cadherin expression. Additionally, six2 overexpression decreased the sensitivity of HCC cells to 5-Fu, characterized as attenuating 5-FU-induced cell apoptosis and downregulation of cell viability, and promoted HCC cells stemness. Mechanistically, six2 overexpression repressed E-cadherin expression via stimulating promoter methylation of the E-cadherin. And E-cadherin overexpression rescued six2-induced decrease of 5-FU sensitivity and promotion on HCC cells stemness. Therefore, our results suggest that Six2 is negatively correlated with good prognosis and decreases 5-FU sensitivity via suppressing E-cadherin expression in HCC cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.05.032DOI Listing

Publication Analysis

Top Keywords

hcc cells
20
5-fu sensitivity
16
e-cadherin expression
16
negatively correlated
12
six2 negatively
8
correlated good
8
good prognosis
8
prognosis decreases
8
decreases 5-fu
8
sensitivity suppressing
8

Similar Publications

Hepatocellular carcinoma (HCC) remains one of the most lethal malignant tumors. Multimodal therapeutics with synergistic effects for treating HCC have attracted increasing attention, for instance, designing biocompatible porphyrin-based nanomedicines for enzyme-mimetic and ultrasound (US)-activable reactive oxygen species (ROS) generation. Despite the promise, the landscape of such advancements remains sparse.

View Article and Find Full Text PDF

Ailanthone blocks mitophagy to promote mtDNA leakage through BAX-BAK1 pores and suppress hepatocellular carcinoma cell proliferation.

Front Pharmacol

December 2024

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.

Introduction: Hepatocellular carcinoma (HCC), the third leading cancer mortality worldwide, shows rising incidence. The mitochondria in HCC cells are prone to damage from metabolic stress and oxidative stress, necessitating heightened mitophagy for mitochondrial homeostasis and cell survival. Thus, mitophagy inhibition is a promising HCC therapy.

View Article and Find Full Text PDF

Ginseng-containing Shentao Ruangan granules (STR) have been a well-known Chinese medicine prescription for the treatment of hepatocellular carcinoma (HCC) in China for decades. This study aimed to establish an experimental framework to decipher the underlying mechanism of STR in the treatment of HCC. Microarray analysis, network pharmacology, RNA-sequencing (RNA-seq), bioinformatics analysis, and and experiments were used as integrated approaches to uncover the effects and mechanisms of action of STR.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) represents a major malignancy globally, characterized by high malignancy and intricate molecular mechanisms. This study aims to explore the role of the long non-coding RNA (lncRNA) lnc-EST885 in HCC development.

Methods: Cell experiments including FISH, western blot, flow cytometry and functional analysis were used to elucidate the effects of lnc-EST885 on cell proliferation, apoptosis, migration and EMT processes.

View Article and Find Full Text PDF

HCC cell immune escape is a critical element in the evolution of HCC malignancy. Herein, the regulatory mechanism of lncRNA NEAT1 in regulating HCC immune escape was investigated. Exosomes were isolated from M2 TAMs using ExoQuick-TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!