A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies. | LitMetric

Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies.

Int J Biochem Cell Biol

Department of Biomedical Engineering, University of Melbourne, Australia; Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Australia. Electronic address:

Published: July 2018

Sensory neurons of the dorsal root ganglia (DRG) are the primary responders to stimuli inducing feelings of touch, pain, temperature, vibration, pressure and muscle tension. They consist of multiple subpopulations based on their morphology, molecular and functional properties. Our understanding of DRG sensory neurons has been predominantly driven by rodent studies and using transformed cell lines, whereas less is known about human sensory DRG neurons simply because of limited availability of human tissue. Although these previous studies have been fundamental for our understanding of the sensory system, it is imperative to profile human DRG subpopulations as it is becoming evident that human sensory neurons do not share the identical molecular and functional properties found in other species. Furthermore, there are wide range of diseases and disorders that directly/indirectly cause sensory neuronal degeneration or dysfunctionality. Having an in vitro source of human DRG sensory neurons is paramount for studying their development, unique neuronal properties and for accelerating regenerative therapies to treat sensory neuropathies. Here we review the major studies describing generation of DRG sensory neurons from human pluripotent stem cells and fibroblasts and the gaps that need to be addressed for using in vitro-generated human DRG neurons to model human DRG tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2018.05.005DOI Listing

Publication Analysis

Top Keywords

sensory neurons
20
human drg
16
drg sensory
12
human
9
sensory
9
dorsal root
8
root ganglia
8
human pluripotent
8
pluripotent stem
8
stem cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!