The phytochemical study of Euphorbia helioscopia led to the isolation of 33 jatrophane diterpenoids (1-33), of which six (1-6) were new. This small jatrophane library was established to screen for potential lipid modulators. LDL-Uptake screening assay demonstrated that most of them improved LDL-Uptake rate in HepG2 cells, with compounds 16, 21 and 26 exhibiting more outstanding effects. Further exploration found that these three compounds could increase LDLR protein level in HepG2 cells dose-dependently. SAR studies suggested that substituted patterns of C-9, steric hindrance between C-14 and C-15, and the long conjugated fragment from C-5 to the carbonyl (C-9) were essential for the activity. Moreover, compound 21, a relatively abundant chemical in E. helioscopia, showed remarkable lipid-lowering effect in vivo, which makes it a promising lead for development of new lipid-lowering agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2018.05.007 | DOI Listing |
Int J Mol Sci
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550014, China.
Euphjatrophanes H-L (-), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from , along with eight known diterpenoids (-). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3.
View Article and Find Full Text PDFPhytochemistry
December 2024
Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China. Electronic address:
A phytochemical investigation into the plants of Euphorbia esula L. has yielded 19 diterpenoids, comprising 17 jatrophane-type (1-7 and 9-18) and two ingenane-type (8 and 19). The structures of these compounds were elucidated by a combination of spectrum elucidations, quantum chemical calculations, and X-ray single crystal diffraction.
View Article and Find Full Text PDFFitoterapia
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. Electronic address:
Nine jatrophane diterpenoids, including six previously undescribed compounds, were extracted and purified from whole plants of Jatropha curcas L. Their structures including absolute configurations were characterized by spectroscopic, quantum chemical Nuclear Magnetic Resonance Spectroscopy, Electronic Circular Dichroism calculation, and Single Crystal X-Ray Diffraction methods. These compounds were evaluated for their ability to reverse multidrug resistance.
View Article and Find Full Text PDFBioorg Chem
December 2024
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real Cádiz, Spain; Instituto Universitario de Investigación en Biomoléculas, Universidad de Cádiz, Puerto Real Cádiz, Spain.
Promoting endogenous neurogenesis for brain repair is emerging as a promising strategy to mitigate the functional impairments associated with various neurological disorders characterized by neuronal death. Diterpenes featuring tigliane, ingenane, jatrophane and lathyrane skeletons, frequently found in Euphorbia plant species, are known protein kinase C (PKC) activators and exhibit a wide variety of pharmacological properties, including the stimulation of neurogenesis. Microbial transformation of these diterpenes represents a green and sustainable methodology that offers a hitherto little explored approach to obtaining novel derivatives and exploring structure-activity relationships.
View Article and Find Full Text PDFJ Med Chem
July 2024
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China.
PCSK9 has been recognized as an efficient target for hyperlipidemia and related cardiovascular/cerebrovascular diseases. However, PCSK9 inhibitors in the clinic are all biological products, and no small molecules are available yet. In the current work, we discovered that the crude extract of () promoted LDL uptake and then obtained 8 new and 12 known jatrophane diterpenoids by activity-guided isolation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!