According to the Alzheimer Association Report (2017), Alzheimer's disease (AD) is the 6th primary cause of death in the USA, which affects nearly 5.5 million people. In the year 2017 itself, the cost of AD treatment in the USA has been reported to rise to $259 billion. This statistic shows the severity of the disease in the USA which is very much similar across the globe. On the other hand, the treatment remains limited to a few conventional oral medications (approved by FDA). These are mainly acting superficially from mild to the moderate AD. The therapeutic efficacy of the drug is not only affected by its reduced concentration in the brain owing to the existence of blood-brain-barrier (BBB) but also due to its low brain permeability. In this context, the intranasal (IN) route of drug administration has emerged as an alternative route over the systemic (oral and parenteral) drug delivery to the brain. The delivery of the drug via an IN route offers various advantages over systemic drug delivery system, as it directly delivers the drug into the brain via olfactory route. Presence of drug in the olfactory bulb, in turn, increases the drug bioavailability in the brain and reduces the drug degradation as well as wastage of the drug through` systemic clearance. However, there is also some limitation associated with IN like poor drug permeation through the nasal mucosa and mucociliary clearance. The delivery system various through novel strategies (nano drug carrier system, colloidal carriers, mucoadhesive devices, controlled delivery system, pro-drug, etc.) are adapted to overcome the above-stated limitations. Although, after all, such successful research claims, very few of the nose-to-brain drug delivery of anti-AD drugs have gained market approval due to lack of sufficient clinical evidence. Onzetra Xsail® is one such marketed preparations approved for IN delivery used for the treatment of a brain disorder; migraine. In the field of patents also, no work is found which could present sufficient experimental findings to support its clinical safety profile. It also underlines the fact that majority of work related to the nose-to-brain delivery of anti-AD drugs is limited only up to preclinical studies. In this review article, we have discussed the latest works on various novel formulations loaded with various anti-Alzheimer agents. These agents include galantamine, deferoxamine, tacrine, tarenflurbil, rivastigmine, risperidone, curcumin, quercetin, piperine, insulin, etc. and various peptides towards the development of a promising IN drug delivery system for the treatment of AD. Through this review article, we want to drag the attention of the researchers working in this field towards the challenges and hurdles of practical applicability IN delivery of anti-AD drugs. Moreover, the attention towards the clinical studies will ease the approval process for the administration of anti-Alzheimer drugs via IN route.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2018.05.011 | DOI Listing |
ACS Appl Bio Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Visual Informatics, The National University of Malaysia (UKM), Bangi, Malaysia.
Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enable adaptive insulin dosing control, they face numerous challenges, including safety and training efficiency, which have hindered their clinical application. This paper proposes a safe and efficient adaptive insulin delivery controller based on DRL.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.
View Article and Find Full Text PDFArch Microbiol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!