3D bioprinting of a corneal stroma equivalent.

Exp Eye Res

Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK. Electronic address:

Published: August 2018

Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083436PMC
http://dx.doi.org/10.1016/j.exer.2018.05.010DOI Listing

Publication Analysis

Top Keywords

corneal
9
corneal stroma
8
corneal structures
8
human corneal
8
bioprinting corneal
4
stroma equivalent
4
equivalent corneal
4
corneal transplantation
4
transplantation constitutes
4
constitutes leading
4

Similar Publications

Anterior segment dysgenesis exerts its influence on a diverse array of ocular structures, encompassing the cornea, iris, ciliary body, anterior chamber and lens. We present a 20-month-old boy with bilateral corneal opacity. The visual acuity (VA) was 6/480 in both eyes.

View Article and Find Full Text PDF

Purpose: To assess the diagnostic capability of pattern electroretinography (PERG) and varying circumpapillary optical coherence tomography (OCT) scan diameters in glaucoma suspects (GS).

Methods: This is a prospective, cross-sectional study. Circumpapillary retinal nerve fiber layer thickness (RNFLT) was measured using spectral domain OCT in 49 eyes from 26 patients (36 normal, 13 GS) in three circle diameters (3.

View Article and Find Full Text PDF

Differences in Ocular Biometry Between Short-Axial and Normal-Axial Eyes in the Elderly Japanese.

Clin Ophthalmol

January 2025

Department of Ophthalmology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi, Saitama, Japan.

Purpose: Among patients with angle-closure glaucoma, it is common to have a short-axial eye, which also makes it difficult to select an appropriate intraocular lens. Previous studies have focused on the ocular biometry of the long-axial eye, whereas only a few reports have focused on the short-axial eye. This study aimed to clarify the characteristics of the short-axial eye on ocular biometry among the elderly Japanese.

View Article and Find Full Text PDF

Purpose: The corneal epithelium is the outermost layer of the cornea. It plays a vital role in both normal and pathological conditions of the eye surface and serves as a protective layer. This study aimed to evaluate corneal epithelial thickness (ET) and create a normative database of corneal ET for pediatric and adult age groups using MS-39 AS-OCT.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!