Aims: Electrolytes and trace elements dysregulation play an important role in the progression of obesity and diabetes complications. The present study was designed to evaluate the insulin sensitizing effects of peroxisomes proliferators activated receptor gamma (PPAR-γ) agonist on trace elements in obesity induced type 2 diabetes mellitus and correlate with serum visfatin.

Materials And Methods: Wistar rats were categorized into five groups. Group I served as control; Group II fed on high fat diet (HFD); Group III fed on HFD and treated with rosiglitazone (3 mg/kg) for 7 days; Group IV were T2DM rats induce by HFD and low dose of streptozotocin (i.p. 35 mg/kg); Group V was T2DM rats treated with rosiglitazone (3 mg/kg) for 7 days. Serum and tissues electrolytes levels and renal, hepatic and cardiac tissues trace elements were estimated by flame photometer and atomic absorption spectroscopy. Serum visfatin was estimated by ELISA. Pearson correlations were analyzed among fasting blood glucose (FBG), serum visfatin and tissues trace elements.

Key Findings: Results of the current study showed hyponatremia, hyperkalemia, hypomagnesemia and hypercalcemia in HFD and T2DM groups. HFD and T2DM also showed elevated copper and iron levels; however, zinc and selenium levels were decreased. Rosiglitazone treatment increased the insulin sensitization and altered these changes. A Strong association was observed among FBG, serum visfatin and trace elements levels of HFD and T2DM.

Significance: Obesity and diabetes mellitus disturbed visfatin, electrolytes and trace elements homeostasis. Rosiglitazone treatment restored these changes. The results of the study could serve as a basis for further studies for the prevention of diabetic complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.05.027DOI Listing

Publication Analysis

Top Keywords

trace elements
24
serum visfatin
16
diabetes mellitus
12
activated receptor
8
receptor gamma
8
visfatin trace
8
high fat
8
fat diet
8
induced type
8
type diabetes
8

Similar Publications

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!