Intermittently wet meadows of the Molinion alliance, as with many other grasslands of high-nature value, have become increasingly exposed to abandonment due to their low economic value. The potential consequences of land abandonment are the decrease in species diversity and environmental alterations. The issue of land-use induced changes in plant species composition and soil physico-chemical parameters have been rarely studied in species-rich intermittently wet grasslands. In this study we attempt to i) to identify determinants of plant species composition patterns and ii) to investigate the effect of cessation of mowing on vegetation composition and soil properties. The study was conducted in an area of 36 ha covered with Molinion meadows, comprising of mown sites and sites that were left unmown for 10 years. In total, 120 and 80 vegetation plots were sampled from mown and unmown sites, respectively. In these plots we measured plant community composition and soil physico-chemical parameters. The results have shown that the two groups of variables (soil properties and management) differ considerably in their ability to explain variation in plant species data. Soil variables explained four-fold more variation in plant species composition than management did. The content of soil organic matter, moisture, total nitrogen and exchangeable forms of potassium, calcium and magnesium were significantly higher in mown than in unmown grassland systems. The results revealed that soil organic matter was the component of the soil most strongly affected by management, followed by moisture, magnesium, calcium and potassium in that order. Each of these soil parameters was negatively correlated with the abundances of woody plants and invasive species. We concluded that low-intensity, late time of mowing is suitable grassland management practice to ensure high plant species diversity and sustainability of the grassland ecological system while cessation of mowing not only lead to reduced plant species richness and diversity, but also to reduced nutrient levels in grassland soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957338 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197363 | PLOS |
Evolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.
View Article and Find Full Text PDFAnn Bot
January 2025
Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Rua Pioneiro, 2153, Jardim Dallas, CEP 85950 000, Palotina, Paraná, Brazil.
Background: Epiphyllous bryophytes are a group of plants with complex adaptations to colonize the leaves of vascular plants and are considered one of the most specialized and sensitive groups to environmental changes. Despite their specificity and ecological importance, these plants represent a largely neglected group in relation to scientific research and ecological data. This lack of information directly affects our understanding of biodiversity patterns and compromises the conservation of this group in threatened ecosystems.
View Article and Find Full Text PDFEcotoxicology
January 2025
Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.
Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Plant individuals within a species can differ markedly in their leaf chemical composition, forming so-called chemotypes. Little is known about whether such differences impact the microbial communities associated with leaves and how different environmental conditions may shape these relationships. We used Tanacetum vulgare as a model plant to study the impacts of maternal effects, leaf terpenoid chemotype, and the environment on the leaf bacterial community by growing plant clones in the field and a greenhouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!