During the development of the visual system, high levels of energy are expended propelling axons from the retina to the brain. However, the role of intermediates of carbohydrate metabolism in the development of the visual system has been overlooked. Here, we report that the carbohydrate metabolites succinate and α-ketoglutarate (α-KG) and their respective receptor-GPR91 and GPR99-are involved in modulating retinal ganglion cell (RGC) projections toward the thalamus during visual system development. Using ex vivo and in vivo approaches, combined with pharmacological and genetic analyses, we revealed that GPR91 and GPR99 are expressed on axons of developing RGCs and have complementary roles during RGC axon growth in an extracellular signal-regulated kinases 1 and 2 (ERK1/2)-dependent manner. However, they have no effects on axon guidance. These findings suggest an important role for these receptors during the establishment of the visual system and provide a foundational link between carbohydrate metabolism and axon growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976209PMC
http://dx.doi.org/10.1371/journal.pbio.2003619DOI Listing

Publication Analysis

Top Keywords

visual system
16
carbohydrate metabolism
12
axon growth
12
intermediates carbohydrate
8
gpr91 gpr99
8
development visual
8
receptors intermediates
4
carbohydrate
4
metabolism gpr91
4
gpr99 mediate
4

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

The emergence of augmented reality (AR) in surgical procedures could significantly enhance accuracy and outcomes, particularly in the complex field of orthognathic surgery. This study compares the effectiveness and accuracy of traditional drilling guides with two AR-based navigation techniques: one utilizing ArUco markers and the other employing small-workspace infrared tracking cameras for a drilling task. Additionally, an alternative AR visualization paradigm for surgical navigation is proposed that eliminates the potential inaccuracies of image detection using headset cameras.

View Article and Find Full Text PDF

The human body is an intricate system, where diverse and complex signaling among different organs sustains physiological activities. The eye, as a primary organ for information acquisition, not only plays a crucial role in visual perception but also, as increasing evidence suggests, exerts a broad influence on the entire body through complex circuits upon receiving light signals which is called non-image-forming vision. However, the extent and mechanisms of light's impact on the body through the eyes remain insufficiently explored.

View Article and Find Full Text PDF

Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!