The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/med.21508 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
Mercury(II) is highly toxic thus the selective and sensitive detection of Hg(II) is important. This research article deals with the synthesis and characterization of the fluorogenic system based on diselenide containing rhodamine by single crystal XRD. The probe has been used for selective detection of Hg(II) in aqueous media with detection limit of 62.
View Article and Find Full Text PDFCureus
December 2024
Pulmonary and Critical Care, Brody School of Medicine, East Carolina University, Greenville, USA.
Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.
View Article and Find Full Text PDFFront Oncol
January 2025
Comprehensive Cancer Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Introduction: This retrospective study aims to evaluate the long-term efficacy and urinary toxicity of LDR-brachytherapy for localized prostate cancer.
Materials And Methods: 235 primary prostate cancer patients treated with LDR-brachytherapy and subsequently followed up in our center were included in this study. Biochemical relapse free survival (bRFS), overall survival (OS), and cancer-specific survival (CSS) were evaluated.
Indian J Urol
January 2025
Department of Urology, Apollo Hospital, Chennai, Tamil Nadu, India.
Introduction: Gallium-68 prostate-specific membrane antigen positron emission tomography (Ga-PSMA PET) is being increasingly used in patients with prostate cancer (PCa) for the staging and detection of lymph node (LN) metastases, despite a lack of prospective, validated evidence. We aimed to investigate the relationship between the PSMA PET findings (maximum standardized uptake [SUV] value) and the final histopathology results (Gleason Grade [GG], and LN positivity) in patients undergoing radical prostatectomy.
Methods: This is a single centre, prospective, observational study of 63 consecutive eligible patients treated at a tertiary care centre in India.
Indian J Urol
January 2025
Department of Urology, Christian Medical College, Vellore, Tamil Nadu, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!