Fine-Scale Population Genetic Structure and Within-Tree Distribution of Mating Types of Venturia effusa, Cause of Pecan Scab in the United States.

Phytopathology

First author: U.S. Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; second and fourth authors: Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401; and third author: Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31793.

Published: November 2018

Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern United States. There is no information available on the fine-scale population genetic diversity or the occurrence of clonal types at small spatial scales that provides insight into inoculum sources and dispersal mechanisms, and potential opportunity for sexual reproduction. To investigate fine-scale genetic diversity, four trees of cultivar Wichita (populations) were sampled hierarchically: within each tree canopy, four approximately evenly spaced terminals (subpopulations) were selected and up to six leaflets (sub-subpopulations) were sampled from different compound leaves on each terminal. All lesions (n = 1 to 8) on each leaflet were sampled. The isolates were screened against a panel of 29 informative microsatellite markers and the resulting multilocus genotypes (MLG) subject to analysis. Mating type was also determined for each isolate. Of 335 isolates, there were 165 MLG (clonal fraction 49.3%). Nei's unbiased measure of genetic diversity for the clone-corrected data were moderate to high (0.507). An analysis of molecular variance demonstrated differentiation (P = 0.001) between populations on leaflets within individual terminals and between terminals within trees in the tree canopies, with 93.8% of variance explained among isolates within leaflet populations. Other analyses (minimum-spanning network, Bayesian, and discriminant analysis of principal components) all indicated little affinity of isolate for source population. Of the 335 isolates, most unique MLG were found at the stratum of the individual leaflets (n = 242), with similar total numbers of unique MLG observed at the strata of the terminal (n = 170), tree (n = 166), and orchard (n = 165). Thus, the vast majority of shared clones existed on individual leaflets on a terminal at the scale of 10s of centimeters or less, indicating a notable component of short-distance dispersal. There was significant linkage disequilibrium (P < 0.001), and an analysis of P showed that where there were multiple encounters of an MLG, they were most probably the result of asexual reproduction (P < 0.05) but there was no evidence that asexual reproduction was involved in single or first encounters of an MLG (P > 0.05). Overall, the MAT1-1-1 and MAT1-2-1 idiomorphs were at equilibrium (73:92) and in most populations, subpopulations, and sub-subpopulations. Both mating types were frequently observed on the same leaflet. The results provide novel information on the characteristics of populations of V. effusa at fine spatial scales, and provide insights into the dispersal of the organism within and between trees. The proximity of both mating idiomorphs on single leaflets is further evidence of opportunity for development of the sexual stage in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-02-18-0068-RDOI Listing

Publication Analysis

Top Keywords

genetic diversity
12
fine-scale population
8
population genetic
8
mating types
8
venturia effusa
8
united states
8
spatial scales
8
335 isolates
8
unique mlg
8
individual leaflets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!