Thermodynamics of Mixing Primary Alkanolamines with Water.

J Phys Chem B

Department of Chemistry , Eszterházy Károly University, Leányka utca 6 , H-3300 Eger , Hungary.

Published: June 2018

The volume, energy, entropy, and Helmholtz free energy of mixing of the seven simplest primary alkanolamine molecules, i.e., monoethanolamine, monoisopropanolamine, 2-amino-propan-1-ol, 2-amino-butan-1-ol, 2-amino-2-methyl-propan-1-ol, 1-amino-2-methyl-propan-2-ol, and 1-amino-butan-2-ol, with water is investigated by extensive computer simulations and thermodynamic integration. To check the force field dependence of the results, all calculations are repeated with two commonly used water models, namely, SPC/E and TIP4P. The obtained results show that the thermodynamics of mixing of alkanolamines and water is largely independent from the type of the alkanolamine molecule. The Helmholtz free energy of mixing is found to be negative for all alkanolamines at every composition, in accordance with the experimentally known full miscibility of these molecules and water. This free energy decrease occurring upon mixing is found to be clearly of energetic origin, as the energy of mixing always turns out to be negative in the entire composition range, while the entropy of mixing is also negative up to high alkanolamine mole fractions. The obtained results suggest that alkanolamines form, on average, stronger hydrogen bonds with water than what is formed by two water molecules, and they induce some ordering of the hydrating water molecules both through the hydrophobic hydration of their side chains and through the strong hydrogen bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b01052DOI Listing

Publication Analysis

Top Keywords

free energy
12
energy mixing
12
thermodynamics mixing
8
water
8
alkanolamines water
8
helmholtz free
8
mixing negative
8
water molecules
8
mixing
6
energy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!