Concentrations and fluxes of total and methylmercury were determined in surface sediments and associated with settling particles at two sites in Lake Geneva to evaluate the sources and dynamics of this toxic contaminant. Total mercury concentrations measured in settling particles were different throughout the seasons and were greatly influenced by the Rhone River particulate inputs. Total mercury concentrations closer to shore (NG2) ranged between 0.073 ± 0.001 and 0.27 ± 0.01 μg/g, and between 0.038 ± 0.001 and 0.214 ± 0.008 μg/g at a site deeper in the lake (NG3). Total mercury fluxes ranged between 0.144 ± 0.002 and 3.0 ± 0.1 μg/m/day at NG2, and between 0.102 ± 0.008 and 1.32 ± 0.08 μg/m/day at NG3. Combined results of concentrations and fluxes showed that total mercury concentrations in settling particles are related to the season and particle inputs from the Rhone River. Despite an observed decrease in total mercury fluxes from the coastal zone towards the open lake, NG3 (~ 3 km from the shoreline) was still affected by the coastal boundary, as compared to distal sites at the center of the lake. Thus, sediment focusing is not efficient enough to redistribute contaminant inputs originating from the coastal zones, to the lake center. Methylmercury concentrations in settling particles largely exceeded the concentrations found in sediments, and their fluxes did not show significant differences with relation to the distance from shore. The methylmercury found associated with settling particles would be related to the lake's internal production rather than the effect of transport from sediment resuspension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2252-3 | DOI Listing |
Sci Total Environ
December 2024
Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China. Electronic address:
The ecological risk of microplastics (MPs) has received widespread attention, but understanding ecological risk starts with understanding environmental migration. Heteroaggregation is an important process that affects the vertical migration of MPs, and the mathematical model is a common tool used to project the migration behavior of MPs. However, the mathematical model based on the aggregation of MPs with one clay particle is not applicable to simulate the migration behavior of buoyant microplastic (BMP).
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy.
Microplastics are mostly inert particles and, therefore, may exhibit low toxicity, but adverse health effects may result from chemical additives commonly added to plastics. Plastic additives serve to make the material workable and thermodynamically stable as well as acting as softeners, fillers and colorants. They may include hazardous chemicals, such as organic phosphates, phthalates, terephthalates, adipates, benzoates, citrates, sebacates, trimellitates, etc.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth Sciences, Dartmouth College, New Hampshire, USA.
Marine microorganisms play a critical role in regulating atmospheric CO concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation.
View Article and Find Full Text PDFJ Environ Manage
December 2024
University of Palermo, , Department of Engineering, Palermo, 90128, Italy. Electronic address:
Sedimentation tanks represent one of the most important components of any water and wastewater treatment plants. The lack of knowledge of hydraulics in sedimentation tank leads to unnecessary capital and operating costs as well as water pollution in the form of excessive sludge. Improper and inadequate design cause overloading of filters, and lead to frequent backwashing, which in turn waste a significant percentage of treated water.
View Article and Find Full Text PDFSmall
December 2024
RIAM, School of Materials Science and Engineering, College of Engineering, Seoul National University, Kwanakro-1, Kwanak-gu, Seoul, 08826, Republic of Korea.
Magnetorheological (MR) fluids are smart materials consisting of magnetic particles in a non-magnetic medium, undergoing phase transitions under a magnetic field to generate yield stress. However, sedimentation and limited particle content hinder their industrial application, balancing high yield stress with stability. This study introduces an innovative MR slurry using Sendust particles, achieving superior yield stress and sedimentation stability compared to traditional systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!