Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium.

Tissue Eng Part C Methods

1 Division of Applied Veterinary Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland.

Published: July 2018

In this article, we report on the development of a defined serum-free medium capable of supporting the culture expansion of mesenchymal stromal/stem cells (MSCs) from canine adipose tissue (canine Ad-MSCs). The potential benefits of serum-free media can only be utilized if cells cultured in serum-free media maintain the same functional characteristics as cells cultured in serum-containing media. Therefore, we analyze the characteristics of canine Ad-MSCs cultured in this serum-free medium or in serum-containing medium through evaluation of growth kinetics, clonogenic capacity, senescence, and differentiation capacity. Both, serum-containing medium and our serum-free medium, supported efficient growth and colony formation of canine Ad-MSCs. In addition, canine Ad-MSCs cultured in both media demonstrated similar viability after freeze/thaw, similar cell surface marker expression, and were capable of trilineage differentiation. While canine Ad-MSCs cultured in both media were generally similar, under the conditions of our study, canine Ad-MSCs cultured in serum-free medium demonstrated a shorter lag phase and higher colony-forming capacity, accelerated population doubling, maintained multipotentiality at higher passage numbers, and underwent senescence at higher passage numbers compared to canine Ad-MSCs cultured in conventional serum-containing medium. These results suggest that canine Ad-MSCs cultured in serum-free medium retain the basic characteristics associated with canine Ad-MSCs cultured in serum-containing medium, although some differences in growth kinetics were observed.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2017.0409DOI Listing

Publication Analysis

Top Keywords

canine ad-mscs
36
ad-mscs cultured
28
serum-free medium
24
cultured serum-free
16
serum-containing medium
16
medium
10
canine
10
ad-mscs
9
cultured
9
mesenchymal stromal/stem
8

Similar Publications

Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system's antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration.

View Article and Find Full Text PDF

Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-Printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects.

J Orthop Translat

November 2024

Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.

Background/objective: Repair of long bone defects remains a major challenge in clinical practice, necessitating the use of bone grafts, growth factors, and mechanical stability. Hence, a combination therapy involving a 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffold coated with polydopamine (PDA) and alginate microbeads (AM) for sustained delivery of bone morphogenetic protein-2 (BMP-2) was investigated to treat long bone segmental defects.

Methods: Several in vitro analyses were performed to evaluate the scaffold osteogenic effects in vitro such as PDA surface modification, namely, hydrophilicity and cell adhesion; cytotoxicity and BMP-2 release kinetics using CCK-8 assay and ELISA, respectively; osteogenic differentiation in canine adipose-derived mesenchymal stem cells (Ad-MSCs); formation of mineralized nodules using ALP staining and ARS staining; and mRNA expression of osteogenic differentiation markers using RT-qPCR.

View Article and Find Full Text PDF

Mesenchymal Stromal Cells (MSCs)-based therapies are rapidly gaining interest in veterinary medicine. Cellular therapy represents a new challenge for practitioners and requires precise coordination between the cell processing laboratory and the veterinary clinic. Cryopreservation is the best method to provide fast, in-time, and long-distance delivery of cells for therapeutic applications.

View Article and Find Full Text PDF

Objective: In regenerative biology, the most commonly used cells are adipose tissue-derived mesenchymal stem cells (AD-MSCs). This is due to the abundance and easy accessibility of AD-MSCs.

Methods: In this study, canine AD-MSCs were harvested from different anatomical locations, i.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!