Dynamic microfluidic nanocalorimetry system for measuring Caenorhabditis elegans metabolic heat.

Lab Chip

Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Published: May 2018

Basal heat production is a key phenotype for assessing the metabolic activity of small living organisms. Here, we present a new nanocalorimetric system, based on thin film thermopile sensors combined with microfluidic chips for measuring metabolic heat signals generated by Caenorhabditis elegans larval populations (60 to 220 organisms). In addition to versatile on-chip fluidic manipulation, our microfluidic approach allows confining worm populations close to the sensor surface, thus increasing the sensitivity of the assays. A customized flow protocol for dynamically displacing the worm population on-chip and off-chip was applied. The resulting sequential recordings of heat source and reference signals enabled precise measurements of slow varying heat-generating metabolic processes. We found an increase of the volume-specific basal heat production from the L2 to the L3 larval stage, and a significant decrease from the L3 to the L4 stage. Additionally, we investigated the metabolic heat production of the larval populations during maximal respiratory capacity, i.e. after inducing uncoupled respiration by on-chip treatment with the mitochondrial uncoupling agent carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). Depending on the larval stage, inducing uncoupled respiration causes an increase of the metabolic heat production ranging from 55% up to 95% with respect to untreated worms.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8lc00238jDOI Listing

Publication Analysis

Top Keywords

metabolic heat
16
heat production
16
caenorhabditis elegans
8
basal heat
8
larval populations
8
production larval
8
larval stage
8
inducing uncoupled
8
uncoupled respiration
8
heat
7

Similar Publications

Effects of 24-h sleep deprivation on whole-body heat exchange in young men during exercise in the heat.

Eur J Appl Physiol

January 2025

Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University, Montpetit Hall, Room 367, Ottawa, ON, Canada.

Sleep deprivation has been associated with impaired thermoregulatory function. However, whether these impairments translate to changes in whole-body heat exchange during exercise-heat stress remains unknown. Therefore, following either a night of normal sleep or 24 h of sleep deprivation, 10 young men (mean (SD): 23 (3) years) completed three 30-min bouts of semi-recumbent cycling at increasing fixed rates of metabolic heat production (150, 200, 250 W/m), each separated by a 15-min rest in dry heat (40 °C, ~ 13% relative humidity).

View Article and Find Full Text PDF

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Computational identification and experimental validation of novel microRNAs along with their targets through RT-PCR approach.

Plant Signal Behav

December 2025

Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.

Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using tools, while also offering a preliminary assessment of their functions.

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!