Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5956081 | PMC |
http://dx.doi.org/10.1038/s41598-018-26054-8 | DOI Listing |
Dev Cogn Neurosci
December 2024
Division of Psychology and Language Sciences, UCL, London WC1H 0AP, UK. Electronic address:
Executive functions can be classified into processes of inhibition, working memory and shifting, which together support flexible and goal-directed behaviour and are crucial for both current and later-life outcomes. A large body of literature has identified distinct brain regions critical to performing each of these functions. These findings are however predicated on a piecemeal and single-task approach.
View Article and Find Full Text PDFAnesthesiology
January 2025
Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Germany.
Background: According to the model of the glymphatic system, the directed flow of cerebrospinal fluid (CSF) is a driver of waste clearance from the brain. In sleep, glymphatic transport is enhanced, but it is unclear how it is affected by anesthesia. Animal research indicates partially opposing effects of distinct anesthetics but corresponding results in humans are lacking.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
Background: Plasma and cerebrospinal (CSF) biomarkers are promising candidates for detecting neuropathology. While CSF biomarkers directly reflect pathophysiological processes within the central nervous system, their requirement for a lumbar puncture is a barrier to their widespread scalability in practice. Therefore, we examined cross-sectional associations of plasma biomarkers of amyloid (Aβ42/Aβ40 and pTau-181), neurodegeneration (Neurofilament Light, NfL), and neuroinflammation (Glial Fibrillary Acidic Protein, GFAP) with brain volume, cognition, and their corresponding CSF levels.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.
Background: Speech abnormalities are increasingly recognized as a manifestation of cognitive deficits in Alzheimer's disease (AD) and its preclinical and prodromal stages. Here, we investigated whether MRI measures of brain atrophy, specifically in the basal forebrain and cortical language areas, can predict cognitive decline and speech difficulties in older adults within the AD spectrum.
Method: The ongoing Prospect-AD study aims to develop an algorithm to automatically identify speech biomarkers in individuals with early signs of AD.
Alzheimers Dement
December 2024
Laboratory of Alzheimer's Neuroimaging and Epidemiology - LANE, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
Background: This study investigated microstructural features of the locus coeruleus to entorhinal cortex pathway (LC-EC) in relation to amyloid (A), tau (T), neurodegeneration (N) markers and cognitive impairment in memory clinic patients.
Method: 124 participants were recruited from the Geneva Memory Clinic (n=30 cognitively unimpaired - CU; n=80 MCI and n=14 dementia - CI) and underwent clinical assessment, 3T MRI scan including diffusion weighted imaging, amyloid PET, and tau PET. Diffusivity indices (fractional anisotropy - FA, mean, axial and radial diffusivities - MD, AxD, RD) were assessed in the LC-EC pathway using a probabilistic atlas.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!