BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington's disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD. BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington's disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990986PMC
http://dx.doi.org/10.1523/JNEUROSCI.1653-17.2018DOI Listing

Publication Analysis

Top Keywords

bdnf secretion
24
arms/kidins220
13
regulated bdnf
12
bdnf
11
secretion
9
regulation bdnf
8
bdnf release
8
synaptotagmin-iv levels
8
bdnf growth
8
growth factor
8

Similar Publications

Insights for the Next Generation of Ketamine for the Treatment of Depressive Disorder.

J Med Chem

January 2025

Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58105, United States.

Treatment-resistant depression responds quickly to ketamine. As an -methyl-d-aspartate receptor (NMDAR) antagonist, ketamine may affect prefrontal cortex (PFC) neurons. Recent investigations reveal that the ()-enantiomer is the most effective and least abuseable antidepressant.

View Article and Find Full Text PDF

Introduction: Substance use disorders, particularly alcohol use disorders, represent a significant public health problem, with adolescents particularly vulnerable to their adverse effects. This study examined the possible anxiolytic and antidepressant effects of biotin, a crucial vitamin for brain function, in attenuating the behavioral and neurobiological changes associated with alcohol withdrawal in adolescent rats.

Materials And Methods: Sixty male Sprague-Dawley rats were exposed to a 20% ethanol solution for 21 days, followed by a 21-day drug-free period to assess long-term behavioral and physiological changes.

View Article and Find Full Text PDF

Thyroid dysfunctions are common in type 1 diabetes mellitus (T1DM) pregnancies, impacting embryogenesis and fetal neurodevelopment. This study investigates the effects of subclinical hypothyroidism and BDNF (Brain-derived neurotrophic factor) telomere length in T1DM mothers and their newborns. In a recent study, researchers found an inverse relationship between TSH (thyroid-stimulating hormone) levels and telomere length in the cord blood of newborns.

View Article and Find Full Text PDF

Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis.

J Agric Food Chem

January 2025

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.

View Article and Find Full Text PDF

Rare gene variants and weight loss at 10 years after sleeve gastrectomy and gastric bypass - a randomized clinical trial.

Surg Obes Relat Dis

December 2024

Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

Background: Genetic background of severe obesity is inadequately understood. The effect of genetic factors on weight loss after metabolic bariatric surgery (MBS) has shown inconclusive results.

Objectives: To determine the prevalence of rare obesity-associated gene variants in a secondary analysis of a randomized clinical trial (RCT) comparing laparoscopic sleeve gastrectomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB) for the treatment of severe obesity and examine their association with long-term weight loss at 10 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!